

Welcome to LightGBM’s documentation!

Contents:

	Installation Guide [https://github.com/Microsoft/LightGBM/wiki/Installation-Guide]

	Quick Start

	Python Quick Start

	Features [https://github.com/Microsoft/LightGBM/wiki/Features]

	Experiments [https://github.com/Microsoft/LightGBM/wiki/Experiments]

	Parameters

	Parameters Tuning

	Python API Reference

	Parallel Learning Guide [https://github.com/Microsoft/LightGBM/wiki/Parallel-Learning-Guide]

	GPU Tutorial

	FAQ

	Development Guide

Indices and tables

	Index

	Module Index

	Search Page

Quick Start

This is a quick start guide for LightGBM of cli version.

Follow the Installation Guide to install LightGBM first.

List of other Helpful Links

	Parameters

	Parameters Tuning

	Python Package quick start guide

	Python API Reference

Training data format

LightGBM supports input data file with CSV [https://en.wikipedia.org/wiki/Comma-separated_values], TSV [https://en.wikipedia.org/wiki/Tab-separated_values] and LibSVM [https://www.csie.ntu.edu.tw/~cjlin/libsvm/] formats.

Label is the data of first column, and there is no header in the file.

Categorical feature support

update 12/5/2016:

LightGBM can use categorical feature directly (without one-hot coding). The experiment on Expo data [http://stat-computing.org/dataexpo/2009/] shows about 8x speed-up compared with one-hot coding.

For the setting details, please refer to Parameters.

Weight and query/group data

LightGBM also support weighted training, it needs an additional weight data. And it needs an additional query data for ranking task.

update 11/3/2016:

	support input with header now

	can specific label column, weight column and query/group id column. Both index and column are supported

	can specific a list of ignored columns

For the detailed usage, please refer to Configuration.

Parameter quick look

The parameter format is key1=value1 key2=value2 And parameters can be in both config file and command line.

Some important parameters:

	config, default="", type=string, alias=config_file
	path of config file

	task, default=train, type=enum, options=train,prediction
	train for training

	prediction for prediction.

	application, default=regression, type=enum, options=regression,binary,lambdarank,multiclass, alias=objective,app
	regression, regression application

	binary, binary classification application

	lambdarank, lambdarank application

	multiclass, multi-class classification application, should set num_class as well

	boosting, default=gbdt, type=enum, options=gbdt,dart, alias=boost,boosting_type
	gbdt, traditional Gradient Boosting Decision Tree

	dart, Dropouts meet Multiple Additive Regression Trees [https://arxiv.org/abs/1505.01866]

	data, default="", type=string, alias=train,train_data
	training data, LightGBM will train from this data

	valid, default="", type=multi-string, alias=test,valid_data,test_data
	validation/test data, LightGBM will output metrics for these data

	support multi validation data, separate by ,

	num_iterations, default=100, type=int, alias=num_iteration,num_tree,num_trees,num_round,num_rounds
	number of boosting iterations/trees

	learning_rate, default=0.1, type=double, alias=shrinkage_rate
	shrinkage rate

	num_leaves, default=31, type=int, alias=num_leaf
	number of leaves in one tree

	tree_learner, default=serial, type=enum, options=serial,feature,data
	serial, single machine tree learner

	feature, feature parallel tree learner

	data, data parallel tree learner

	Refer to Parallel Learning Guide to get more details.

	num_threads, default=OpenMP_default, type=int, alias=num_thread,nthread
	Number of threads for LightGBM.

	For the best speed, set this to the number of real CPU cores, not the number of threads (most CPU using hyper-threading [https://en.wikipedia.org/wiki/Hyper-threading] to generate 2 threads per CPU core).

	For parallel learning, should not use full CPU cores since this will cause poor performance for the network.

	max_depth, default=-1, type=int
	Limit the max depth for tree model. This is used to deal with overfit when #data is small. Tree still grow by leaf-wise.

	< 0 means no limit

	min_data_in_leaf, default=20, type=int, alias=min_data_per_leaf , min_data
	Minimal number of data in one leaf. Can use this to deal with over-fit.

	min_sum_hessian_in_leaf, default=1e-3, type=double, alias=min_sum_hessian_per_leaf, min_sum_hessian, min_hessian
	Minimal sum hessian in one leaf. Like min_data_in_leaf, can use this to deal with over-fit.

For all parameters, please refer to Parameters.

Run LightGBM

For Windows:

lightgbm.exe config=your_config_file other_args ...

For unix:

./lightgbm config=your_config_file other_args ...

Parameters can be both in the config file and command line, and the parameters in command line have higher priority than in config file.
For example, following command line will keep ‘num_trees=10’ and ignore same parameter in config file.

./lightgbm config=train.conf num_trees=10

Examples

	Binary Classification [https://github.com/henry0312/LightGBM/tree/master/docs../examples/binary_classification]

	Regression [https://github.com/henry0312/LightGBM/tree/master/docs../examples/regression]

	Lambdarank [https://github.com/henry0312/LightGBM/tree/master/docs../examples/lambdarank]

	Parallel Learning [https://github.com/henry0312/LightGBM/tree/master/docs../examples/parallel_learning]

Python Package Introduction

This document gives a basic walkthrough of LightGBM python package.

List of other Helpful Links

	Python Examples [https://github.com/henry0312/LightGBM/tree/master/docs../examples/python-guide]

	Python API Reference

	Parameters Tuning

Install

	Install the library first, follow the wiki here.

	Install python-package dependencies, setuptools, numpy and scipy is required, scikit-learn is required for sklearn interface and recommended. Run:

pip install setuptools numpy scipy scikit-learn -U

	In the python-package directory, run

python setup.py install

	To verify your installation, try to import lightgbm in Python.

import lightgbm as lgb

Data Interface

The LightGBM python module is able to load data from:

	libsvm/tsv/csv txt format file

	Numpy 2D array, pandas object

	LightGBM binary file

The data is stored in a Dataset object.

To load a libsvm text file or a LightGBM binary file into Dataset:

train_data = lgb.Dataset('train.svm.bin')

To load a numpy array into Dataset:

data = np.random.rand(500,10) # 500 entities, each contains 10 features
label = np.random.randint(2, size=500) # binary target
train_data = lgb.Dataset(data, label=label)

To load a scpiy.sparse.csr_matrix array into Dataset:

csr = scipy.sparse.csr_matrix((dat, (row, col)))
train_data = lgb.Dataset(csr)

Saving Dataset into a LightGBM binary file will make loading faster:

train_data = lgb.Dataset('train.svm.txt')
train_data.save_binary("train.bin")

Create validation data

test_data = train_data.create_valid('test.svm')

or

test_data = lgb.Dataset('test.svm', reference=train_data)

In LightGBM, the validation data should be aligned with training data.

Specific feature names and categorical features

train_data = lgb.Dataset(data, label=label, feature_name=['c1', 'c2', 'c3'], categorical_feature=['c3'])

LightGBM can use categorical features as input directly. It doesn’t need to covert to one-hot coding, and is much faster than one-hot coding (about 8x speed-up).
Note:You should convert your categorical features to int type before you construct Dataset.

Weights can be set when needed:

w = np.random.rand(500,)
train_data = lgb.Dataset(data, label=label, weight=w)

or

train_data = lgb.Dataset(data, label=label)
w = np.random.rand(500,)
train_data.set_weight(w)

And you can use Dataset.set_init_score() to set initial score, and Dataset.set_group() to set group/query data for ranking tasks.

Memory efficent usage

The Dataset object in LightGBM is very memory-efficient, due to it only need to save discrete bins.
However, Numpy/Array/Pandas object is memory cost. If you concern about your memory consumption. You can save memory accroding to following:

	Let free_raw_data=True(default is True) when constructing the Dataset

	Explicit set raw_data=None after the Dataset has been constructed

	Call gc

Setting Parameters

LightGBM can use either a list of pairs or a dictionary to set parameters. For instance:

	Booster parameters

param = {'num_leaves':31, 'num_trees':100, 'objective':'binary' }
param['metric'] = 'auc'

	You can also specify multiple eval metrics:

param['metric'] = ['auc', 'binary_logloss']

Training

Training a model requires a parameter list and data set.

num_round = 10
bst = lgb.train(param, train_data, num_round, valid_sets=[test_data])

After training, the model can be saved.

bst.save_model('model.txt')

The trained model can also be dumped to JSON format

dump model
json_model = bst.dump_model()

A saved model can be loaded as follows:

bst = lgb.Booster(model_file="model.txt") #init model

CV

Training with 5-fold CV:

num_round = 10
lgb.cv(param, train_data, num_round, nfold=5)

Early Stopping

If you have a validation set, you can use early stopping to find the optimal number of boosting rounds.
Early stopping requires at least one set in valid_sets. If there’s more than one, it will use all of them.

bst = train(param, train_data, num_round, valid_sets=valid_sets, early_stopping_rounds=10)
bst.save_model('model.txt', num_iteration=bst.best_iteration)

The model will train until the validation score stops improving. Validation error needs to improve at least every early_stopping_rounds to continue training.

If early stopping occurs, the model will have an additional field: bst.best_iteration. Note that train() will return a model from the last iteration, not the best one. And you can set num_iteration=bst.best_iteration when saving model.

This works with both metrics to minimize (L2, log loss, etc.) and to maximize (NDCG, AUC). Note that if you specify more than one evaluation metric, all of them will be used for early stopping.

Prediction

A model that has been trained or loaded can perform predictions on data sets.

7 entities, each contains 10 features
data = np.random.rand(7, 10)
ypred = bst.predict(data)

If early stopping is enabled during training, you can get predictions from the best iteration with bst.best_iteration:

ypred = bst.predict(data,num_iteration=bst.best_iteration)

Parameters

This is a page contains all parameters in LightGBM.

List of other Helpful Links

	Python API Reference

	Parameters Tuning

Update of 04/13/2017

Default values for the following parameters have changed:

	min_data_in_leaf = 100 => 20

	min_sum_hessian_in_leaf = 10 => 1e-3

	num_leaves = 127 => 31

	num_iterations = 10 => 100

Parameter format

The parameter format is key1=value1 key2=value2 And parameters can be set both in config file and command line. By using command line, parameters should not have spaces before and after =. By using config files, one line can only contain one parameter. you can use # to comment. If one parameter appears in both command line and config file, LightGBM will use the parameter in command line.

Core Parameters

	config, default="", type=string, alias=config_file
	path of config file

	task, default=train, type=enum, options=train,prediction
	train for training

	prediction for prediction.

	application, default=regression, type=enum, options=regression,regression_l1,huber,fair,poisson,binary,lambdarank,multiclass, alias=objective,app
	regression, regression application
	regression_l2, L2 loss, alias=mean_squared_error,mse

	regression_l1, L1 loss, alias=mean_absolute_error,mae

	huber, Huber loss [https://en.wikipedia.org/wiki/Huber_loss]

	fair, Fair loss [https://www.kaggle.com/c/allstate-claims-severity/discussion/24520]

	poisson, Poisson regression [https://en.wikipedia.org/wiki/Poisson_regression]

	binary, binary classification application

	lambdarank, lambdarank [https://pdfs.semanticscholar.org/fc9a/e09f9ced555558fdf1e997c0a5411fb51f15.pdf] application

	multiclass, multi-class classification application, should set num_class as well

	boosting, default=gbdt, type=enum, options=gbdt,dart, alias=boost,boosting_type
	gbdt, traditional Gradient Boosting Decision Tree

	dart, Dropouts meet Multiple Additive Regression Trees [https://arxiv.org/abs/1505.01866]

	goss, Gradient-based One-Side Sampling

	data, default="", type=string, alias=train,train_data
	training data, LightGBM will train from this data

	valid, default="", type=multi-string, alias=test,valid_data,test_data
	validation/test data, LightGBM will output metrics for these data

	support multi validation data, separate by ,

	num_iterations, default=100, type=int, alias=num_iteration,num_tree,num_trees,num_round,num_rounds
	number of boosting iterations

	note: num_tree here equal with num_iterations. For multi-class, it actually learns num_class * num_iterations trees.

	note: For python/R package, cannot use this parameters to control number of iterations.

	learning_rate, default=0.1, type=double, alias=shrinkage_rate
	shrinkage rate

	in dart, it also affects normalization weights of dropped trees

	num_leaves, default=31, type=int, alias=num_leaf
	number of leaves in one tree

	tree_learner, default=serial, type=enum, options=serial,feature,data
	serial, single machine tree learner

	feature, feature parallel tree learner

	data, data parallel tree learner

	Refer to Parallel Learning Guide to get more details.

	num_threads, default=OpenMP_default, type=int, alias=num_thread,nthread
	Number of threads for LightGBM.

	For the best speed, set this to the number of real CPU cores, not the number of threads (most CPU using hyper-threading [https://en.wikipedia.org/wiki/Hyper-threading] to generate 2 threads per CPU core).

	For parallel learning, should not use full CPU cores since this will cause poor performance for the network.

	device, default=cpu, options=cpu,gpu
	Choose device for the tree learning, can use gpu to achieve the faster learning.

	Note: 1. Recommend use the smaller max_bin(e.g 63) to get the better speed up. 2. For the faster speed, GPU use 32-bit float point to sum up by default, may affect the accuracy for some tasks. You can set gpu_use_dp=true to enable 64-bit float point, but it will slow down the training. 3. Refer to Installation Guide [https://github.com/Microsoft/LightGBM/wiki/Installation-Guide#with-gpu-support] to build with GPU .

Learning control parameters

	max_depth, default=-1, type=int
	Limit the max depth for tree model. This is used to deal with overfit when #data is small. Tree still grow by leaf-wise.

	< 0 means no limit

	min_data_in_leaf, default=20, type=int, alias=min_data_per_leaf , min_data
	Minimal number of data in one leaf. Can use this to deal with over-fit.

	min_sum_hessian_in_leaf, default=1e-3, type=double, alias=min_sum_hessian_per_leaf, min_sum_hessian, min_hessian
	Minimal sum hessian in one leaf. Like min_data_in_leaf, can use this to deal with over-fit.

	feature_fraction, default=1.0, type=double, 0.0 < feature_fraction < 1.0, alias=sub_feature
	LightGBM will random select part of features on each iteration if feature_fraction smaller than 1.0. For example, if set to 0.8, will select 80% features before training each tree.

	Can use this to speed up training

	Can use this to deal with over-fit

	feature_fraction_seed, default=2, type=int
	Random seed for feature fraction.

	bagging_fraction, default=1.0, type=double, , 0.0 < bagging_fraction < 1.0, alias=sub_row
	Like feature_fraction, but this will random select part of data

	Can use this to speed up training

	Can use this to deal with over-fit

	Note: To enable bagging, should set bagging_freq to a non zero value as well

	bagging_freq, default=0, type=int
	Frequency for bagging, 0 means disable bagging. k means will perform bagging at every k iteration.

	Note: To enable bagging, should set bagging_fraction as well

	bagging_seed , default=3, type=int
	Random seed for bagging.

	early_stopping_round , default=0, type=int, alias=early_stopping_rounds,early_stopping
	Will stop training if one metric of one validation data doesn’t improve in last early_stopping_round rounds.

	lambda_l1 , default=0, type=double
	l1 regularization

	lambda_l2 , default=0, type=double
	l2 regularization

	min_gain_to_split , default=0, type=double
	The minimal gain to perform split

	drop_rate, default=0.1, type=double
	only used in dart

	skip_drop, default=0.5, type=double
	only used in dart, probability of skipping drop

	max_drop, default=50, type=int
	only used in dart, max number of dropped trees on one iteration. <=0 means no limit.

	uniform_drop, default=false, type=bool
	only used in dart, true if want to use uniform drop

	xgboost_dart_mode, default=false, type=bool
	only used in dart, true if want to use xgboost dart mode

	drop_seed, default=4, type=int
	only used in dart, used to random seed to choose dropping models.

	top_rate, default=0.2, type=double
	only used in goss, the retain ratio of large gradient data

	other_rate, default=0.1, type=int
	only used in goss, the retain ratio of small gradient data

IO parameters

	max_bin, default=255, type=int
	max number of bin that feature values will bucket in. Small bin may reduce training accuracy but may increase general power (deal with over-fit).

	LightGBM will auto compress memory according max_bin. For example, LightGBM will use uint8_t for feature value if max_bin=255.

	data_random_seed, default=1, type=int
	random seed for data partition in parallel learning(not include feature parallel).

	output_model, default=LightGBM_model.txt, type=string, alias=model_output,model_out
	file name of output model in training.

	input_model, default="", type=string, alias=model_input,model_in
	file name of input model.

	for prediction task, will prediction data using this model.

	for train task, will continued train from this model.

	output_result, default=LightGBM_predict_result.txt, type=string, alias=predict_result,prediction_result
	file name of prediction result in prediction task.

	is_pre_partition, default=false, type=bool
	used for parallel learning(not include feature parallel).

	true if training data are pre-partitioned, and different machines using different partition.

	is_sparse, default=true, type=bool, alias=is_enable_sparse
	used to enable/disable sparse optimization. Set to false to disable sparse optimization.

	two_round, default=false, type=bool, alias=two_round_loading,use_two_round_loading
	by default, LightGBM will map data file to memory and load features from memory. This will provide faster data loading speed. But it may out of memory when the data file is very big.

	set this to true if data file is too big to fit in memory.

	save_binary, default=false, type=bool, alias=is_save_binary,is_save_binary_file
	set this to true will save the data set(include validation data) to a binary file. Speed up the data loading speed for the next time.

	verbosity, default=1, type=int, alias=verbose
	<0 = Fatel, =0 = Error(Warn), >0 = Info

	header, default=false, type=bool, alias=has_header
	true if input data has header

	label, default="", type=string, alias=label_column
	specific the label column

	Use number for index, e.g. label=0 means column_0 is the label

	Add a prefix name: for column name, e.g. label=name:is_click

	weight, default="", type=string, alias=weight_column
	specific the weight column

	Use number for index, e.g. weight=0 means column_0 is the weight

	Add a prefix name: for column name, e.g. weight=name:weight

	Note: Index start from 0. And it doesn’t count the label column when passing type is Index. e.g. when label is column_0, and weight is column_1, the correct parameter is weight=0.

	query, default="", type=string, alias=query_column,group,group_column
	specific the query/group id column

	Use number for index, e.g. query=0 means column_0 is the query id

	Add a prefix name: for column name, e.g. query=name:query_id

	Note: Data should group by query_id. Index start from 0. And it doesn’t count the label column when passing type is Index. e.g. when label is column_0, and query_id is column_1, the correct parameter is query=0.

	ignore_column, default="", type=string, alias=ignore_feature,blacklist
	specific some ignore columns in training

	Use number for index, e.g. ignore_column=0,1,2 means column_0, column_1 and column_2 will be ignored.

	Add a prefix name: for column name, e.g. ignore_column=name:c1,c2,c3 means c1, c2 and c3 will be ignored.

	Note: Index start from 0. And it doesn’t count the label column.

	categorical_feature, default="", type=string, alias=categorical_column,cat_feature,cat_column
	specific categorical features

	Use number for index, e.g. categorical_feature=0,1,2 means column_0, column_1 and column_2 are categorical features.

	Add a prefix name: for column name, e.g. categorical_feature=name:c1,c2,c3 means c1, c2 and c3 are categorical features.

	Note: Only support categorical with int type. Index start from 0. And it doesn’t count the label column.

	predict_raw_score, default=false, type=bool, alias=raw_score,is_predict_raw_score
	only used in prediction task

	Set to true will only predict the raw scores.

	Set to false will transformed score

	predict_leaf_index, default=false, type=bool, alias=leaf_index,is_predict_leaf_index
	only used in prediction task

	Set to true to predict with leaf index of all trees

	bin_construct_sample_cnt, default=200000, type=int
	Number of data that sampled to construct histogram bins.

	Will give better training result when set this larger. But will increase data loading time.

	Set this to larger value if data is very sparse.

	num_iteration_predict, default=-1, type=int
	only used in prediction task, used to how many trained iterations will be used in prediction.

	<= 0 means no limit

Objective parameters

	sigmoid, default=1.0, type=double
	parameter for sigmoid function. Will be used in binary classification and lambdarank.

	huber_delta, default=1.0, type=double
	parameter for Huber loss [https://en.wikipedia.org/wiki/Huber_loss]. Will be used in regression task.

	fair_c, default=1.0, type=double
	parameter for Fair loss [https://www.kaggle.com/c/allstate-claims-severity/discussion/24520]. Will be used in regression task.

	poission_max_delta_step, default=0.7, type=double
	parameter used to safeguard optimization

	scale_pos_weight, default=1.0, type=double
	weight of positive class in binary classification task

	boost_from_average, default=true, type=bool
	adjust initial score to the mean of labels for faster convergence, only used in Regression task.

	is_unbalance, default=false, type=bool
	used in binary classification. Set this to true if training data are unbalance.

	max_position, default=20, type=int
	used in lambdarank, will optimize NDCG at this position.

	label_gain, default=0,1,3,7,15,31,63,..., type=multi-double
	used in lambdarank, relevant gain for labels. For example, the gain of label 2 is 3 if using default label gains.

	Separate by ,

	num_class, default=1, type=int, alias=num_classes
	only used in multi-class classification

Metric parameters

	metric, default={l2 for regression}, {binary_logloss for binary classification},{ndcg for lambdarank}, type=multi-enum, options=l1,l2,ndcg,auc,binary_logloss,binary_error...
	l1, absolute loss, alias=mean_absolute_error, mae

	l2, square loss, alias=mean_squared_error, mse

	l2_root, root square loss, alias=root_mean_squared_error, rmse

	huber, Huber loss [https://en.wikipedia.org/wiki/Huber_loss]

	fair, Fair loss [https://www.kaggle.com/c/allstate-claims-severity/discussion/24520]

	poisson, Poisson regression [https://en.wikipedia.org/wiki/Poisson_regression]

	ndcg, NDCG [https://en.wikipedia.org/wiki/Discounted_cumulative_gain#Normalized_DCG]

	map, MAP [https://www.kaggle.com/wiki/MeanAveragePrecision]

	auc, AUC [https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve]

	binary_logloss, log loss [https://www.kaggle.com/wiki/LogLoss]

	binary_error. For one sample 0 for correct classification, 1 for error classification.

	multi_logloss, log loss for mulit-class classification

	multi_error. error rate for mulit-class classification

	Support multi metrics, separate by ,

	metric_freq, default=1, type=int
	frequency for metric output

	is_training_metric, default=false, type=bool
	set this to true if need to output metric result of training

	ndcg_at, default=1,2,3,4,5, type=multi-int, alias=ndcg_eval_at,eval_at
	NDCG evaluation position, separate by ,

Network parameters

Following parameters are used for parallel learning, and only used for base(socket) version.

	num_machines, default=1, type=int, alias=num_machine
	Used for parallel learning, the number of machines for parallel learning application

	Need to set this in both socket and mpi version.

	local_listen_port, default=12400, type=int, alias=local_port
	TCP listen port for local machines.

	Should allow this port in firewall setting before training.

	time_out, default=120, type=int
	Socket time-out in minutes.

	machine_list_file, default="", type=string
	File that list machines for this parallel learning application

	Each line contains one IP and one port for one machine. The format is ip port, separate by space.

GPU parameters

	gpu_platform_id, default=-1, type=int
	OpenCL platform ID. Usually each GPU vendor exposes one OpenCL platform.

	Default value is -1, using the system-wide default platform.

	gpu_device_id, default=-1, type=int
	OpenCL device ID in the specified platform. Each GPU in the selected platform has a unique device ID.

	Default value is -1, using the default device in the selected platform.

	gpu_use_dp, default=false, type=bool
	Set to true to use double precision math on GPU (default using single precision).

Others

Continued training with input score

LightGBM support continued train with initial score. It uses an additional file to store these initial score, like the following:

0.5
-0.1
0.9
...

It means the initial score of first data is 0.5, second is -0.1, and so on. The initial score file corresponds with data file line by line, and has per score per line. And if the name of data file is “train.txt”, the initial score file should be named as “train.txt.init” and in the same folder as the data file. And LightGBM will auto load initial score file if it exists.

Weight data

LightGBM support weighted training. It uses an additional file to store weight data, like the following:

1.0
0.5
0.8
...

It means the weight of first data is 1.0, second is 0.5, and so on. The weight file corresponds with data file line by line, and has per weight per line. And if the name of data file is “train.txt”, the weight file should be named as “train.txt.weight” and in the same folder as the data file. And LightGBM will auto load weight file if it exists.

update:
You can specific weight column in data file now. Please refer to parameter weight in above.

Query data

For LambdaRank learning, it needs query information for training data. LightGBM use an additional file to store query data. Following is an example:

27
18
67
...

It means first 27 lines samples belong one query and next 18 lines belong to another, and so on.(Note: data should order by query) If name of data file is “train.txt”, the query file should be named as “train.txt.query” and in same folder of training data. LightGBM will load the query file automatically if it exists.

You can specific query/group id in data file now. Please refer to parameter group in above.

Parameters Tuning

This is a page contains all parameters in LightGBM.

List of other Helpful Links

	Parameters

	Python API Reference

Convert parameters from XGBoost

LightGBM uses leaf-wise [https://github.com/Microsoft/LightGBM/wiki/Features#optimization-in-accuracy] tree growth algorithm. But other popular tools, e.g. XGBoost, use depth-wise tree growth. So LightGBM use num_leaves to control complexity of tree model, and other tools usually use max_depth. Following table is the correspond between leaves and depths. The relation is num_leaves = 2^(max_depth).

max_depth	num_leaves
———	———-
1	2
2	4
3	8
7	128
10	1024

For faster speed

	Use bagging by set bagging_fraction and bagging_freq

	Use feature sub-sampling by set feature_fraction

	Use small max_bin

	Use save_binary to speed up data loading in future learning

	Use parallel learning, refer to parallel learning guide.

For better accuracy

	Use large max_bin (may be slower)

	Use small learning_rate with large num_iterations

	Use large num_leaves(may cause over-fitting)

	Use bigger training data

	Try dart

Deal with over-fitting

	Use small max_bin

	Use small num_leaves

	Use min_data_in_leaf and min_sum_hessian_in_leaf

	Use bagging by set bagging_fraction and bagging_freq

	Use feature sub-sampling by set feature_fraction

	Use bigger training data

	Try lambda_l1, lambda_l2 and min_gain_to_split to regularization

	Try max_depth to avoid growing deep tree

lightgbm package

Data Structure API

	
class lightgbm.Dataset(data, label=None, max_bin=255, reference=None, weight=None, group=None, silent=False, feature_name='auto', categorical_feature='auto', params=None, free_raw_data=True)

	Bases: object

Dataset in LightGBM.

	
construct()

	Lazy init

	
create_valid(data, label=None, weight=None, group=None, silent=False, params=None)

	Create validation data align with current dataset

	Parameters:	
	data (string/numpy array/scipy.sparse) – Data source of Dataset.
When data type is string, it represents the path of txt file

	label (list or numpy 1-D array, optional) – Label of the training data.

	weight (list or numpy 1-D array , optional) – Weight for each instance.

	group (list or numpy 1-D array , optional) – Group/query size for dataset

	silent (boolean, optional) – Whether print messages during construction

	params (dict, optional) – Other parameters

	
get_field(field_name)

	Get property from the Dataset.

	Parameters:	field_name (str) – The field name of the information

	Returns:	info – A numpy array of information of the data

	Return type:	array

	
get_group()

	Get the group of the Dataset.

	Returns:	init_score

	Return type:	array

	
get_init_score()

	Get the initial score of the Dataset.

	Returns:	init_score

	Return type:	array

	
get_label()

	Get the label of the Dataset.

	Returns:	label

	Return type:	array

	
get_weight()

	Get the weight of the Dataset.

	Returns:	weight

	Return type:	array

	
num_data()

	Get the number of rows in the Dataset.

	Returns:	number of rows

	Return type:	int

	
num_feature()

	Get the number of columns (features) in the Dataset.

	Returns:	number of columns

	Return type:	int

	
save_binary(filename)

	Save Dataset to binary file

	Parameters:	filename (string) – Name of the output file.

	
set_categorical_feature(categorical_feature)

	Set categorical features

	Parameters:	categorical_feature (list of int or str) – Name/index of categorical features

	
set_feature_name(feature_name)

	Set feature name

	Parameters:	feature_name (list of str) – Feature names

	
set_field(field_name, data)

	Set property into the Dataset.

	Parameters:	
	field_name (str) – The field name of the information

	data (numpy array or list or None) – The array ofdata to be set

	
set_group(group)

	Set group size of Dataset (used for ranking).

	Parameters:	group (numpy array or list or None) – Group size of each group

	
set_init_score(init_score)

	Set init score of booster to start from.

	Parameters:	init_score (numpy array or list or None) – Init score for booster

	
set_label(label)

	Set label of Dataset

	Parameters:	label (numpy array or list or None) – The label information to be set into Dataset

	
set_reference(reference)

	Set reference dataset

	Parameters:	reference (Dataset) – Will use reference as template to consturct current dataset

	
set_weight(weight)

	Set weight of each instance.

	Parameters:	weight (numpy array or list or None) – Weight for each data point

	
subset(used_indices, params=None)

	Get subset of current dataset

	Parameters:	
	used_indices (list of int) – Used indices of this subset

	params (dict) – Other parameters

	
class lightgbm.Booster(params=None, train_set=None, model_file=None, silent=False)

	Bases: object

“Booster in LightGBM.

	
add_valid(data, name)

	Add an validation data

	Parameters:	
	data (Dataset) – Validation data

	name (String) – Name of validation data

	
attr(key)

	Get attribute string from the Booster.

	Parameters:	key (str) – The key to get attribute from.

	Returns:	value – The attribute value of the key, returns None if attribute do not exist.

	Return type:	str

	
dump_model(num_iteration=-1)

	Dump model to json format

	Parameters:	num_iteration (int) – Number of iteration that want to dump. < 0 means dump to best iteration(if have)

	Returns:	

	Return type:	Json format of model

	
eval(data, name, feval=None)

	Evaluate for data

	Parameters:	
	data (Dataset object) –

	name – Name of data

	feval (function) – Custom evaluation function.

	Returns:	result – Evaluation result list.

	Return type:	list

	
eval_train(feval=None)

	Evaluate for training data

	Parameters:	feval (function) – Custom evaluation function.

	Returns:	result – Evaluation result list.

	Return type:	str

	
eval_valid(feval=None)

	Evaluate for validation data

	Parameters:	feval (function) – Custom evaluation function.

	Returns:	result – Evaluation result list.

	Return type:	str

	
feature_importance(importance_type='split')

	Get feature importances

	Parameters:	
	importance_type (str, default "split") –

	the importance is calculated (How) –

	is the number of times a feature is used in a model ("split") –

	is the total gain of splits which use the feature ("gain") –

	Returns:	result – Array of feature importances.

	Return type:	array

	
feature_name()

	Get feature names.

	Returns:	result – Array of feature names.

	Return type:	array

	
params_str = None

	construct booster object

	
predict(data, num_iteration=-1, raw_score=False, pred_leaf=False, data_has_header=False, is_reshape=True)

	Predict logic

	Parameters:	
	data (string/numpy array/scipy.sparse) – Data source for prediction
When data type is string, it represents the path of txt file

	num_iteration (int) – Used iteration for prediction, < 0 means predict for best iteration(if have)

	raw_score (bool) – True for predict raw score

	pred_leaf (bool) – True for predict leaf index

	data_has_header (bool) – Used for txt data

	is_reshape (bool) – Reshape to (nrow, ncol) if true

	Returns:	

	Return type:	Prediction result

	
reset_parameter(params)

	Reset parameters for booster

	Parameters:	
	params (dict) – New parameters for boosters

	silent (boolean, optional) – Whether print messages during construction

	
rollback_one_iter()

	Rollback one iteration

	
save_model(filename, num_iteration=-1)

	Save model of booster to file

	Parameters:	
	filename (str) – Filename to save

	num_iteration (int) – Number of iteration that want to save. < 0 means save the best iteration(if have)

	
set_attr(**kwargs)

	Set the attribute of the Booster.

	Parameters:	**kwargs – The attributes to set. Setting a value to None deletes an attribute.

	
update(train_set=None, fobj=None)

	Update for one iteration
Note: for multi-class task, the score is group by class_id first, then group by row_id

if you want to get i-th row score in j-th class, the access way is score[j*num_data+i]
and you should group grad and hess in this way as well

	Parameters:	
	train_set – Training data, None means use last training data

	fobj (function) – Customized objective function.

	Returns:	

	Return type:	is_finished, bool

Training API

	
lightgbm.train(params, train_set, num_boost_round=100, valid_sets=None, valid_names=None, fobj=None, feval=None, init_model=None, feature_name='auto', categorical_feature='auto', early_stopping_rounds=None, evals_result=None, verbose_eval=True, learning_rates=None, callbacks=None)

	Train with given parameters.

	Parameters:	
	params (dict) – Parameters for training.

	train_set (Dataset) – Data to be trained.

	num_boost_round (int) – Number of boosting iterations.

	valid_sets (list of Datasets) – List of data to be evaluated during training

	valid_names (list of string) – Names of valid_sets

	fobj (function) – Customized objective function.

	feval (function) – Customized evaluation function.
Note: should return (eval_name, eval_result, is_higher_better) of list of this

	init_model (file name of lightgbm model or 'Booster' instance) – model used for continued train

	feature_name (list of str, or 'auto') – Feature names
If ‘auto’ and data is pandas DataFrame, use data columns name

	categorical_feature (list of str or int, or 'auto') – Categorical features,
type int represents index,
type str represents feature names (need to specify feature_name as well)
If ‘auto’ and data is pandas DataFrame, use pandas categorical columns

	early_stopping_rounds (int) – Activates early stopping.
Requires at least one validation data and one metric
If there’s more than one, will check all of them
Returns the model with (best_iter + early_stopping_rounds)
If early stopping occurs, the model will add ‘best_iteration’ field

	evals_result (dict or None) – This dictionary used to store all evaluation results of all the items in valid_sets.
Example: with a valid_sets containing [valid_set, train_set]

and valid_names containing [‘eval’, ‘train’]
and a paramater containing (‘metric’:’logloss’)

	Returns: {‘train’: {‘logloss’: [‘0.48253’, ‘0.35953’, ...]},

	‘eval’: {‘logloss’: [‘0.480385’, ‘0.357756’, ...]}}

passed with None means no using this function

	verbose_eval (bool or int) – Requires at least one item in evals.
If verbose_eval is True,

the eval metric on the valid set is printed at each boosting stage.

	If verbose_eval is int,

	the eval metric on the valid set is printed at every verbose_eval boosting stage.

	The last boosting stage

	or the boosting stage found by using early_stopping_rounds is also printed.

	Example: with verbose_eval=4 and at least one item in evals,

	an evaluation metric is printed every 4 (instead of 1) boosting stages.

	learning_rates (list or function) – List of learning rate for each boosting round
or a customized function that calculates learning_rate
in terms of current number of round (e.g. yields learning rate decay)
- list l: learning_rate = l[current_round]
- function f: learning_rate = f(current_round)

	callbacks (list of callback functions) – List of callback functions that are applied at each iteration.
See Callbacks in Python-API.md for more information.

	Returns:	booster

	Return type:	a trained booster model

	
lightgbm.cv(params, train_set, num_boost_round=10, folds=None, nfold=5, stratified=False, shuffle=True, metrics=None, fobj=None, feval=None, init_model=None, feature_name='auto', categorical_feature='auto', early_stopping_rounds=None, fpreproc=None, verbose_eval=None, show_stdv=True, seed=0, callbacks=None)

	Cross-validation with given paramaters.

	Parameters:	
	params (dict) – Booster params.

	train_set (Dataset) – Data to be trained.

	num_boost_round (int) – Number of boosting iterations.

	folds (a generator or iterator of (train_idx, test_idx) tuples) – The train indices and test indices for each folds.
This argument has highest priority over other data split arguments.

	nfold (int) – Number of folds in CV.

	stratified (bool) – Perform stratified sampling.

	shuffle (bool) – Whether shuffle before split data

	metrics (string or list of strings) – Evaluation metrics to be watched in CV.
If metrics is not None, the metric in params will be overridden.

	fobj (function) – Custom objective function.

	feval (function) – Custom evaluation function.

	init_model (file name of lightgbm model or 'Booster' instance) – model used for continued train

	feature_name (list of str, or 'auto') – Feature names
If ‘auto’ and data is pandas DataFrame, use data columns name

	categorical_feature (list of str or int, or 'auto') – Categorical features,
type int represents index,
type str represents feature names (need to specify feature_name as well)
If ‘auto’ and data is pandas DataFrame, use pandas categorical columns

	early_stopping_rounds (int) – Activates early stopping. CV error needs to decrease at least
every <early_stopping_rounds> round(s) to continue.
Last entry in evaluation history is the one from best iteration.

	fpreproc (function) – Preprocessing function that takes (dtrain, dtest, param)
and returns transformed versions of those.

	verbose_eval (bool, int, or None, default None) – Whether to display the progress.
If None, progress will be displayed when np.ndarray is returned.
If True, progress will be displayed at boosting stage.
If an integer is given,

progress will be displayed at every given verbose_eval boosting stage.

	show_stdv (bool, default True) – Whether to display the standard deviation in progress.
Results are not affected, and always contains std.

	seed (int) – Seed used to generate the folds (passed to numpy.random.seed).

	callbacks (list of callback functions) – List of callback functions that are applied at each iteration.
See Callbacks in Python-API.md for more information.

	Returns:	evaluation history

	Return type:	list(string)

Scikit-learn API

	
class lightgbm.LGBMModel(boosting_type='gbdt', num_leaves=31, max_depth=-1, learning_rate=0.1, n_estimators=10, max_bin=255, subsample_for_bin=50000, objective='regression', min_split_gain=0, min_child_weight=5, min_child_samples=10, subsample=1, subsample_freq=1, colsample_bytree=1, reg_alpha=0, reg_lambda=0, scale_pos_weight=1, is_unbalance=False, seed=0, nthread=-1, silent=True, sigmoid=1.0, huber_delta=1.0, gaussian_eta=1.0, fair_c=1.0, poisson_max_delta_step=0.7, max_position=20, label_gain=None, drop_rate=0.1, skip_drop=0.5, max_drop=50, uniform_drop=False, xgboost_dart_mode=False)

	Bases: object

	
apply(X, num_iteration=0)

	Return the predicted leaf every tree for each sample.

	Parameters:	
	X (array_like, shape=[n_samples, n_features]) – Input features matrix.

	num_iteration (int) – Limit number of iterations in the prediction; defaults to 0 (use all trees).

	Returns:	X_leaves

	Return type:	array_like, shape=[n_samples, n_trees]

	
booster_

	Get the underlying lightgbm Booster of this model.

	
evals_result_

	Get the evaluation results.

	
feature_importances_

	Get normailized feature importances.

	
fit(X, y, sample_weight=None, init_score=None, group=None, eval_set=None, eval_names=None, eval_sample_weight=None, eval_init_score=None, eval_group=None, eval_metric=None, early_stopping_rounds=None, verbose=True, feature_name='auto', categorical_feature='auto', callbacks=None)

	Fit the gradient boosting model

	Parameters:	
	X (array_like) – Feature matrix

	y (array_like) – Labels

	sample_weight (array_like) – weight of training data

	init_score (array_like) – init score of training data

	group (array_like) – group data of training data

	eval_set (list, optional) – A list of (X, y) tuple pairs to use as a validation set for early-stopping

	eval_names (list of string) – Names of eval_set

	eval_sample_weight (List of array) – weight of eval data

	eval_init_score (List of array) – init score of eval data

	eval_group (List of array) – group data of eval data

	eval_metric (str, list of str, callable, optional) – If a str, should be a built-in evaluation metric to use.
If callable, a custom evaluation metric, see note for more details.

	early_stopping_rounds (int) –

	verbose (bool) – If verbose and an evaluation set is used, writes the evaluation

	feature_name (list of str, or 'auto') – Feature names
If ‘auto’ and data is pandas DataFrame, use data columns name

	categorical_feature (list of str or int, or 'auto') – Categorical features,
type int represents index,
type str represents feature names (need to specify feature_name as well)
If ‘auto’ and data is pandas DataFrame, use pandas categorical columns

	callbacks (list of callback functions) – List of callback functions that are applied at each iteration.
See Callbacks in Python-API.md for more information.

Note

	Custom eval function expects a callable with following functions:

	
	func(y_true, y_pred), func(y_true, y_pred, weight)

	or func(y_true, y_pred, weight, group).

	return (eval_name, eval_result, is_bigger_better)

	or list of (eval_name, eval_result, is_bigger_better)

	y_true: array_like of shape [n_samples]

	The target values

	y_pred: array_like of shape [n_samples] or shape[n_samples * n_class] (for multi-class)

	The predicted values

	weight: array_like of shape [n_samples]

	The weight of samples

	group: array_like

	group/query data, used for ranking task

	eval_name: str

	name of evaluation

	eval_result: float

	eval result

	is_bigger_better: bool

	is eval result bigger better, e.g. AUC is bigger_better.

	for multi-class task, the y_pred is group by class_id first, then group by row_id

	if you want to get i-th row y_pred in j-th class, the access way is y_pred[j*num_data+i]

	
predict(X, raw_score=False, num_iteration=0)

	Return the predicted value for each sample.

	Parameters:	
	X (array_like, shape=[n_samples, n_features]) – Input features matrix.

	num_iteration (int) – Limit number of iterations in the prediction; defaults to 0 (use all trees).

	Returns:	predicted_result

	Return type:	array_like, shape=[n_samples] or [n_samples, n_classes]

	
class lightgbm.LGBMClassifier(boosting_type='gbdt', num_leaves=31, max_depth=-1, learning_rate=0.1, n_estimators=10, max_bin=255, subsample_for_bin=50000, objective='binary', min_split_gain=0, min_child_weight=5, min_child_samples=10, subsample=1, subsample_freq=1, colsample_bytree=1, reg_alpha=0, reg_lambda=0, scale_pos_weight=1, is_unbalance=False, seed=0, nthread=-1, silent=True, sigmoid=1.0, drop_rate=0.1, skip_drop=0.5, max_drop=50, uniform_drop=False, xgboost_dart_mode=False)

	Bases: lightgbm.sklearn.LGBMModel, object

	
classes_

	Get class label array.

	
n_classes_

	Get number of classes

	
predict_proba(X, raw_score=False, num_iteration=0)

	Return the predicted probability for each class for each sample.

	Parameters:	
	X (array_like, shape=[n_samples, n_features]) – Input features matrix.

	num_iteration (int) – Limit number of iterations in the prediction; defaults to 0 (use all trees).

	Returns:	predicted_probability

	Return type:	array_like, shape=[n_samples, n_classes]

	
class lightgbm.LGBMRegressor(boosting_type='gbdt', num_leaves=31, max_depth=-1, learning_rate=0.1, n_estimators=10, max_bin=255, subsample_for_bin=50000, objective='regression', min_split_gain=0, min_child_weight=5, min_child_samples=10, subsample=1, subsample_freq=1, colsample_bytree=1, reg_alpha=0, reg_lambda=0, seed=0, nthread=-1, silent=True, huber_delta=1.0, gaussian_eta=1.0, fair_c=1.0, poisson_max_delta_step=0.7, drop_rate=0.1, skip_drop=0.5, max_drop=50, uniform_drop=False, xgboost_dart_mode=False)

	Bases: lightgbm.sklearn.LGBMModel, object

	
class lightgbm.LGBMRanker(boosting_type='gbdt', num_leaves=31, max_depth=-1, learning_rate=0.1, n_estimators=10, max_bin=255, subsample_for_bin=50000, objective='lambdarank', min_split_gain=0, min_child_weight=5, min_child_samples=10, subsample=1, subsample_freq=1, colsample_bytree=1, reg_alpha=0, reg_lambda=0, scale_pos_weight=1, is_unbalance=False, seed=0, nthread=-1, silent=True, sigmoid=1.0, max_position=20, label_gain=None, drop_rate=0.1, skip_drop=0.5, max_drop=50, uniform_drop=False, xgboost_dart_mode=False)

	Bases: lightgbm.sklearn.LGBMModel

	
fit(X, y, sample_weight=None, init_score=None, group=None, eval_set=None, eval_names=None, eval_sample_weight=None, eval_init_score=None, eval_group=None, eval_metric='ndcg', eval_at=1, early_stopping_rounds=None, verbose=True, feature_name='auto', categorical_feature='auto', callbacks=None)

	Most arguments like common methods except following:

	eval_at : list of int

	The evaulation positions of NDCG

Callbacks

	
lightgbm.early_stopping(stopping_rounds, verbose=True)

	Create a callback that activates early stopping.
Activates early stopping.
Requires at least one validation data and one metric
If there’s more than one, will check all of them

	Parameters:	
	stopping_rounds (int) – The stopping rounds before the trend occur.

	verbose (optional, bool) – Whether to print message about early stopping information.

	Returns:	callback – The requested callback function.

	Return type:	function

	
lightgbm.print_evaluation(period=1, show_stdv=True)

	Create a callback that print evaluation result.

	Parameters:	
	period (int) – The period to log the evaluation results

	show_stdv (bool, optional) – Whether show stdv if provided

	Returns:	callback – A callback that print evaluation every period iterations.

	Return type:	function

	
lightgbm.record_evaluation(eval_result)

	Create a call back that records the evaluation history into eval_result.

	Parameters:	eval_result (dict) – A dictionary to store the evaluation results.

	Returns:	callback – The requested callback function.

	Return type:	function

	
lightgbm.reset_parameter(**kwargs)

	Reset parameter after first iteration

NOTE: the initial parameter will still take in-effect on first iteration.

	Parameters:	**kwargs (value should be list or function) – List of parameters for each boosting round
or a customized function that calculates learning_rate in terms of
current number of round (e.g. yields learning rate decay)
- list l: parameter = l[current_round]
- function f: parameter = f(current_round)

	Returns:	callback – The requested callback function.

	Return type:	function

Plotting

	
lightgbm.plot_importance(booster, ax=None, height=0.2, xlim=None, ylim=None, title='Feature importance', xlabel='Feature importance', ylabel='Features', importance_type='split', max_num_features=None, ignore_zero=True, figsize=None, grid=True, **kwargs)

	Plot model feature importances.

	Parameters:	
	booster (Booster or LGBMModel) – Booster or LGBMModel instance

	ax (matplotlib Axes) – Target axes instance. If None, new figure and axes will be created.

	height (float) – Bar height, passed to ax.barh()

	xlim (tuple of 2 elements) – Tuple passed to axes.xlim()

	ylim (tuple of 2 elements) – Tuple passed to axes.ylim()

	title (str) – Axes title. Pass None to disable.

	xlabel (str) – X axis title label. Pass None to disable.

	ylabel (str) – Y axis title label. Pass None to disable.

	importance_type (str) – How the importance is calculated: “split” or “gain”
“split” is the number of times a feature is used in a model
“gain” is the total gain of splits which use the feature

	max_num_features (int) – Max number of top features displayed on plot.
If None or smaller than 1, all features will be displayed.

	ignore_zero (bool) – Ignore features with zero importance

	figsize (tuple of 2 elements) – Figure size

	grid (bool) – Whether add grid for axes

	**kwargs – Other keywords passed to ax.barh()

	Returns:	ax

	Return type:	matplotlib Axes

	
lightgbm.plot_metric(booster, metric=None, dataset_names=None, ax=None, xlim=None, ylim=None, title='Metric during training', xlabel='Iterations', ylabel='auto', figsize=None, grid=True)

	Plot one metric during training.

	Parameters:	
	booster (dict or LGBMModel) – Evals_result recorded by lightgbm.train() or LGBMModel instance

	metric (str or None) – The metric name to plot.
Only one metric supported because different metrics have various scales.
Pass None to pick first one (according to dict hashcode).

	dataset_names (None or list of str) – List of the dataset names to plot.
Pass None to plot all datasets.

	ax (matplotlib Axes) – Target axes instance. If None, new figure and axes will be created.

	xlim (tuple of 2 elements) – Tuple passed to axes.xlim()

	ylim (tuple of 2 elements) – Tuple passed to axes.ylim()

	title (str) – Axes title. Pass None to disable.

	xlabel (str) – X axis title label. Pass None to disable.

	ylabel (str) – Y axis title label. Pass None to disable. Pass ‘auto’ to use metric.

	figsize (tuple of 2 elements) – Figure size

	grid (bool) – Whether add grid for axes

	Returns:	ax

	Return type:	matplotlib Axes

	
lightgbm.plot_tree(booster, ax=None, tree_index=0, figsize=None, graph_attr=None, node_attr=None, edge_attr=None, show_info=None)

	Plot specified tree.

	Parameters:	
	booster (Booster, LGBMModel) – Booster or LGBMModel instance.

	ax (matplotlib Axes) – Target axes instance. If None, new figure and axes will be created.

	tree_index (int, default 0) – Specify tree index of target tree.

	figsize (tuple of 2 elements) – Figure size.

	graph_attr (dict) – Mapping of (attribute, value) pairs for the graph.

	node_attr (dict) – Mapping of (attribute, value) pairs set for all nodes.

	edge_attr (dict) – Mapping of (attribute, value) pairs set for all edges.

	show_info (list) – Information shows on nodes.
options: ‘split_gain’, ‘internal_value’, ‘internal_count’ or ‘leaf_count’.

	Returns:	ax

	Return type:	matplotlib Axes

	
lightgbm.create_tree_digraph(booster, tree_index=0, show_info=None, name=None, comment=None, filename=None, directory=None, format=None, engine=None, encoding=None, graph_attr=None, node_attr=None, edge_attr=None, body=None, strict=False)

	Create a digraph of specified tree.

	See:

	
	http://graphviz.readthedocs.io/en/stable/api.html#digraph

	Parameters:	
	booster (Booster, LGBMModel) – Booster or LGBMModel instance.

	tree_index (int, default 0) – Specify tree index of target tree.

	show_info (list) – Information shows on nodes.
options: ‘split_gain’, ‘internal_value’, ‘internal_count’ or ‘leaf_count’.

	name (str) – Graph name used in the source code.

	comment (str) – Comment added to the first line of the source.

	filename (str) – Filename for saving the source (defaults to name + ‘.gv’).

	directory (str) – (Sub)directory for source saving and rendering.

	format (str) – Rendering output format (‘pdf’, ‘png’, ...).

	engine (str) – Layout command used (‘dot’, ‘neato’, ...).

	encoding (str) – Encoding for saving the source.

	graph_attr (dict) – Mapping of (attribute, value) pairs for the graph.

	node_attr (dict) – Mapping of (attribute, value) pairs set for all nodes.

	edge_attr (dict) – Mapping of (attribute, value) pairs set for all edges.

	body (list of str) – Iterable of lines to add to the graph body.

	strict (bool) – Iterable of lines to add to the graph body.

	Returns:	graph

	Return type:	graphviz Digraph

LightGBM GPU Tutorial

The purpose of this document is to give you a quick step-by-step tutorial on GPU training.

For Windows, please see GPU Windows Tutorial.

We will use the GPU instance on Microsoft Azure cloud computing platform [https://azure.microsoft.com/] for demonstration, but you can use any machine with modern AMD or NVIDIA GPUs.

GPU Setup

You need to launch a NV type instance on Azure (available in East US, North Central US, South Central US, West Europe and Southeast Asia zones) and select Ubuntu 16.04 LTS as the operating system.

For testing, the smallest NV6 type virtual machine is sufficient, which includes 1/2 M60 GPU, with 8 GB memory, 180 GB/s memory bandwidth and 4,825 GFLOPS peak computation power. Don’t use the NC type instance as the GPUs (K80) are based on an older architecture (Kepler).

First we need to install minimal NVIDIA drivers and OpenCL development environment:

sudo apt-get update
sudo apt-get install --no-install-recommends nvidia-375
sudo apt-get install --no-install-recommends nvidia-opencl-icd-375 nvidia-opencl-dev opencl-headers

After installing the drivers you need to restart the server.

sudo init 6

After about 30 seconds, the server should be up again.

If you are using a AMD GPU, you should download and install the AMDGPU-Pro [http://support.amd.com/en-us/download/linux] driver and also install package ocl-icd-libopencl1 and ocl-icd-opencl-dev.

Build LightGBM

Now install necessary building tools and dependencies:

sudo apt-get install --no-install-recommends git cmake build-essential libboost-dev libboost-system-dev libboost-filesystem-dev

The NV6 GPU instance has a 320 GB ultra-fast SSD mounted at /mnt. Let’s use it as our workspace (skip this if you are using your own machine):

sudo mkdir -p /mnt/workspace
sudo chown $(whoami):$(whoami) /mnt/workspace
cd /mnt/workspace

Now we are ready to checkout LightGBM and compile it with GPU support:

git clone --recursive https://github.com/Microsoft/LightGBM
cd LightGBM
mkdir build ; cd build
cmake -DUSE_GPU=1 ..
make -j$(nproc)
cd ..

You will see two binaries are generated, lightgbm and lib_lightgbm.so.

If you are building on OSX, you probably need to remove macro BOOST_COMPUTE_USE_OFFLINE_CACHE in src/treelearner/gpu_tree_learner.h to avoid a known crash bug in Boost.Compute.

Install Python Interface (optional)

If you want to use the Python interface of LightGBM, you can install it now (along with some necessary Python package dependencies):

sudo apt-get -y install python-pip
sudo -H pip install setuptools numpy scipy scikit-learn -U
cd python-package/
sudo python setup.py install
cd ..

You need to set an additional parameter "device" : "gpu" (along with your other options like learning_rate, num_leaves, etc) to use GPU in Python.

You can read our Python Guide [https://github.com/Microsoft/LightGBM/tree/master/examples/python-guide] for more information on how to use the Python interface.

Dataset Preparation

Using the following commands to prepare the Higgs dataset:

git clone https://github.com/guolinke/boosting_tree_benchmarks.git
cd boosting_tree_benchmarks/data
wget "https://archive.ics.uci.edu/ml/machine-learning-databases/00280/HIGGS.csv.gz"
gunzip HIGGS.csv.gz
python higgs2libsvm.py
cd ../..
ln -s boosting_tree_benchmarks/data/higgs.train
ln -s boosting_tree_benchmarks/data/higgs.test

Now we create a configuration file for LightGBM by running the following commands (please copy the entire block and run it as a whole):

cat > lightgbm_gpu.conf <<EOF
max_bin = 63
num_leaves = 255
num_iterations = 50
learning_rate = 0.1
tree_learner = serial
task = train
is_train_metric = false
min_data_in_leaf = 1
min_sum_hessian_in_leaf = 100
ndcg_eval_at = 1,3,5,10
sparse_threshold = 1.0
device = gpu
gpu_platform_id = 0
gpu_device_id = 0
EOF
echo "num_threads=$(nproc)" >> lightgbm_gpu.conf

GPU is enabled in the configuration file we just created by setting device=gpu. It will use the first GPU installed on the system by default (gpu_platform_id=0 and gpu_device_id=0).

Run Your First Learning Task on GPU

Now we are ready to start GPU training! First we want to verify the GPU works correctly. Run the following command to train on GPU, and take a note of the AUC after 50 iterations:

./lightgbm config=lightgbm_gpu.conf data=higgs.train valid=higgs.test objective=binary metric=auc

Now train the same dataset on CPU using the following command. You should observe a similar AUC:

./lightgbm config=lightgbm_gpu.conf data=higgs.train valid=higgs.test objective=binary metric=auc device=cpu

Now we can make a speed test on GPU without calculating AUC after each iteration.

./lightgbm config=lightgbm_gpu.conf data=higgs.train objective=binary metric=auc

Speed test on CPU:

./lightgbm config=lightgbm_gpu.conf data=higgs.train objective=binary metric=auc device=cpu

You should observe over three times speedup on this GPU.

The GPU acceleration can be used on other tasks/metrics (regression, multi-class classification, ranking, etc) as well. For example, we can train the Higgs dataset on GPU as a regression task:

./lightgbm config=lightgbm_gpu.conf data=higgs.train objective=regression_l2 metric=l2

Also, you can compare the training speed with CPU:

./lightgbm config=lightgbm_gpu.conf data=higgs.train objective=regression_l2 metric=l2 device=cpu

Further Reading

GPU Tuning Guide and Performance Comparison

GPU SDK Correspondence and Device Targeting Table.

GPU Windows Tutorial

LightGBM FAQ

Catalog

	Python-package

Python-package

	Question 1: I see error messages like this when install from github using python setup.py install.

error: Error: setup script specifies an absolute path:

/Users/Microsoft/LightGBM/python-package/lightgbm/../../lib_lightgbm.so

setup() arguments must *always* be /-separated paths relative to the
setup.py directory, *never* absolute paths.

	Solution 1: this error should be solved in latest version. If you still meet this error, try to remove lightgbm.egg-info folder in your python-package and reinstall, or check this thread on stackoverflow [http://stackoverflow.com/questions/18085571/pip-install-error-setup-script-specifies-an-absolute-path].

	Question 2: I see error messages like Cannot get/set label/weight/init_score/group/num_data/num_feature before construct dataset, but I already construct dataset by some code like train = lightgbm.Dataset(X_train, y_train), or error messages like Cannot set predictor/reference/categorical feature after freed raw data, set free_raw_data=False when construct Dataset to avoid this..

	Solution 2: Because LightGBM constructs bin mappers to build trees, and train and valid Datasets within one Booster share the same bin mappers, categorical features and feature names etc., the Dataset objects are constructed when construct a Booster. And if you set free_raw_data=True (default), the raw data (with python data struct) will be freed. So, if you want to:

	get label(or weight/init_score/group) before construct dataset, it’s same as get self.label

	set label(or weight/init_score/group) before construct dataset, it’s same as self.label=some_label_array

	get num_data(or num_feature) before construct dataset, you can get data with self.data, then if your data is numpy.ndarray, use some code like self.data.shape

	set predictor(or reference/categorical feature) after construct dataset, you should set free_raw_data=False or init a Dataset object with the same raw data

Development Guide

Algorithms

Refer to Features [https://github.com/Microsoft/LightGBM/wiki/Features] to get important algorithms used in LightGBM.

Classes And Code Structure

Important Classes

Class	description
—–	———
Application	The entrance of application, including training and prediction logic
Bin	Data structure used for store feature discrete values(converted from float values)
Boosting	Boosting interface, current implementation is GBDT and DART
Config	Store parameters and configurations
Dataset	Store information of dataset
DatasetLoader	Used to construct dataset
Feature	Store One column feature
Metric	Evaluation metrics
Network	Newwork interfaces and communication algorithms
ObjectiveFunction	Objective function used to train
Tree	Store information of tree model
TreeLearner	Used to learn trees

Code Structure

Path	description
—–	———
./include	header files
./include/utils	some common functions
./src/application	Implementations of training and prediction logic
./src/boosting	Implementations of Boosting
./src/io	Implementations of IO relatived classes, including Bin, Config, Dataset, DatasetLoader, Feature and Tree
./src/metric	Implementations of metrics
./src/network	Implementations of network functions
./src/objective	Implementations of objective functions
./src/treelearner	Implementations of tree learners

API Documents

LightGBM support use doxygen [http://www.stack.nl/~dimitri/doxygen/] to generate documents for classes and functions.

C API

Refere to the comments in c_api.h [https://github.com/Microsoft/LightGBM/blob/master/include/LightGBM/c_api.h].

High level Language package

Follow the implementation of python-package [https://github.com/Microsoft/LightGBM/tree/master/python-package/lightgbm].

Ask Questions

Feel free to open issues [https://github.com/Microsoft/LightGBM/issues] if you met problems.

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | L
 | N
 | P
 | R
 | S
 | T
 | U

A

 	
 	add_valid() (lightgbm.Booster method)

 	
 	apply() (lightgbm.LGBMModel method)

 	attr() (lightgbm.Booster method)

B

 	
 	Booster (class in lightgbm)

 	
 	booster_ (lightgbm.LGBMModel attribute)

C

 	
 	classes_ (lightgbm.LGBMClassifier attribute)

 	construct() (lightgbm.Dataset method)

 	
 	create_tree_digraph() (in module lightgbm)

 	create_valid() (lightgbm.Dataset method)

 	cv() (in module lightgbm)

D

 	
 	Dataset (class in lightgbm)

 	
 	dump_model() (lightgbm.Booster method)

E

 	
 	early_stopping() (in module lightgbm)

 	eval() (lightgbm.Booster method)

 	
 	eval_train() (lightgbm.Booster method)

 	eval_valid() (lightgbm.Booster method)

 	evals_result_ (lightgbm.LGBMModel attribute)

F

 	
 	feature_importance() (lightgbm.Booster method)

 	feature_importances_ (lightgbm.LGBMModel attribute)

 	
 	feature_name() (lightgbm.Booster method)

 	fit() (lightgbm.LGBMModel method)

 	(lightgbm.LGBMRanker method)

G

 	
 	get_field() (lightgbm.Dataset method)

 	get_group() (lightgbm.Dataset method)

 	
 	get_init_score() (lightgbm.Dataset method)

 	get_label() (lightgbm.Dataset method)

 	get_weight() (lightgbm.Dataset method)

L

 	
 	LGBMClassifier (class in lightgbm)

 	LGBMModel (class in lightgbm)

 	
 	LGBMRanker (class in lightgbm)

 	LGBMRegressor (class in lightgbm)

N

 	
 	n_classes_ (lightgbm.LGBMClassifier attribute)

 	
 	num_data() (lightgbm.Dataset method)

 	num_feature() (lightgbm.Dataset method)

P

 	
 	params_str (lightgbm.Booster attribute)

 	plot_importance() (in module lightgbm)

 	plot_metric() (in module lightgbm)

 	plot_tree() (in module lightgbm)

 	
 	predict() (lightgbm.Booster method)

 	(lightgbm.LGBMModel method)

 	predict_proba() (lightgbm.LGBMClassifier method)

 	print_evaluation() (in module lightgbm)

R

 	
 	record_evaluation() (in module lightgbm)

 	reset_parameter() (in module lightgbm)

 	(lightgbm.Booster method)

 	
 	rollback_one_iter() (lightgbm.Booster method)

S

 	
 	save_binary() (lightgbm.Dataset method)

 	save_model() (lightgbm.Booster method)

 	set_attr() (lightgbm.Booster method)

 	set_categorical_feature() (lightgbm.Dataset method)

 	set_feature_name() (lightgbm.Dataset method)

 	set_field() (lightgbm.Dataset method)

 	
 	set_group() (lightgbm.Dataset method)

 	set_init_score() (lightgbm.Dataset method)

 	set_label() (lightgbm.Dataset method)

 	set_reference() (lightgbm.Dataset method)

 	set_weight() (lightgbm.Dataset method)

 	subset() (lightgbm.Dataset method)

T

 	
 	train() (in module lightgbm)

U

 	
 	update() (lightgbm.Booster method)

Documents

The documentation of LightGBM is generated with Sphinx and recommonmark, and hosted on Read the Docs.

For detail, see:

	Read the Docs [https://readthedocs.org/]
	Welcome to Read The Docs [http://docs.readthedocs.io/]

	Sphinx [http://www.sphinx-doc.org/]

	recommonmark [https://recommonmark.readthedocs.io/]

Build

You can build the documentation locally. Just run:

pip install -r requirements.txt
make html

Links

	Installation Guide [https://github.com/Microsoft/LightGBM/wiki/Installation-Guide]

	Quick Start

	Python Quick Start

	Features [https://github.com/Microsoft/LightGBM/wiki/Features]

	Experiments [https://github.com/Microsoft/LightGBM/wiki/Experiments]

	Parameters

	Parameters Tuning

	Python API Reference

	Parallel Learning Guide [https://github.com/Microsoft/LightGBM/wiki/Parallel-Learning-Guide]

	GPU Tutorial

	FAQ

	Development Guide

 Refer to https://github.com/Microsoft/LightGBM/wiki/Parallel-Learning-Guide

Python API Reference

Catalog

	Data Structure API
	Dataset

	Booster

	Training API
	train

	cv

	Scikit-learn API
	Common Methods

	Common Attributes

	LGBMClassifier

	LGBMRegressor

	LGBMRanker

	Callbacks
	Before iteration
	reset_parameter

	After iteration
	print_evaluation

	record_evaluation

	early_stopping

	Plotting

The methods of each Class is in alphabetical order.

Basic Data Structure API

Dataset

__init__(data, label=None, max_bin=255, reference=None, weight=None, group=None, silent=False, feature_name=’auto’, categorical_feature=’auto’, params=None, free_raw_data=True)

Parameters

data : str/numpy array/scipy.sparse
 Data source of Dataset.
 When data type is string, it represents the path of txt file
label : list or numpy 1-D array, optional
 Label of the data
max_bin : int, required
 Max number of discrete bin for features
reference : Other Dataset, optional
 If this dataset validation, need to use training data as reference
weight : list or numpy 1-D array, optional
 Weight for each instance.
group : list or numpy 1-D array, optional
 Group/query size for dataset
silent : boolean, optional
 Whether print messages during construction
feature_name : list of str, or 'auto'
 Feature names
 If 'auto' and data is pandas DataFrame, use data columns name
categorical_feature : list of str or int, or 'auto'
 Categorical features,
 type int represents index,
 type str represents feature names (need to specify feature_name as well)
 If 'auto' and data is pandas DataFrame, use pandas categorical columns
params : dict, optional
 Other parameters
free_raw_data : Bool
 True if need to free raw data after construct inner dataset

create_valid(data, label=None, weight=None, group=None, silent=False, params=None)

Create validation data align with current dataset.

Parameters

data : str/numpy array/scipy.sparse
 Data source of _InnerDataset.
 When data type is string, it represents the path of txt file
label : list or numpy 1-D array, optional
 Label of the training data.
weight : list or numpy 1-D array, optional
 Weight for each instance.
group : list or numpy 1-D array, optional
 Group/query size for dataset
silent : boolean, optional
 Whether print messages during construction
params : dict, optional
 Other parameters

get_group()

Get the initial score of the Dataset.

Returns

init_score : array

get_init_score()

Get the initial score of the Dataset.

Returns

init_score : array

get_label()

Get the label of the Dataset.

Returns

label : array

get_weight()

Get the weight of the Dataset.

Returns

weight : array

num_data()

Get the number of rows in the Dataset.

Returns

number of rows : int

num_feature()

Get the number of columns (features) in the Dataset.

Returns

number of columns : int

save_binary(filename)

Save Dataset to binary file.

Parameters

filename : str
 Name of the output file.

set_categorical_feature(categorical_feature)

Set categorical features.

Parameters

categorical_feature : list of str or list of int
 Name (str) or index (int) of categorical features

set_feature_name(feature_name)

Set feature name.

Parameters

feature_name : list of str
 Feature names

set_group(group)

Set group size of Dataset (used for ranking).

Parameters

group : numpy array or list or None
 Group size of each group

set_init_score(init_score)

Set init score of booster to start from.

Parameters

init_score : numpy array or list or None
 Init score for booster

set_label(label)

Set label of Dataset.

Parameters

label : numpy array or list or None
 The label information to be set into Dataset

set_reference(reference)

Set reference dataset.

Parameters

reference : Dataset
 Will use reference as template to consturct current dataset

set_weight(weight)

Set weight of each instance.

Parameters

weight : numpy array or list or None
 Weight for each data point

subset(used_indices, params=None)

Get subset of current dataset.

Parameters

used_indices : list of int
 Used indices of this subset
params : dict
 Other parameters

Booster

__init__(params=None, train_set=None, model_file=None, silent=False)

Initialize the Booster.

Parameters

params : dict
 Parameters for boosters.
train_set : Dataset
 Training dataset
model_file : str
 Path to the model file.
silent : boolean, optional
 Whether print messages during construction

add_valid(data, name)

Add an validation data.

Parameters

data : Dataset
 Validation data
name : str
 Name of validation data

attr(key)

Get attribute string from the Booster.

Parameters

key : str
 The key to get attribute from.

Returns

value : str
 The attribute value of the key, returns None if attribute do not exist.

current_iteration()

Get current number of iterations.

Returns

result : int
 Current number of iterations

dump_model()

Dump model to json format.

Returns

result : dict or list
 Json format of model

eval(data, name, feval=None)

Evaluate for data.

Parameters

data : _InnerDataset object
name :
 Name of data
feval : function
 Custom evaluation function.
Returns

result : list
 Evaluation result list.

eval_train(feval=None)

Evaluate for training data.

Parameters

feval : function
 Custom evaluation function.

Returns

result: str
 Evaluation result list.

eval_valid(feval=None)

Evaluate for validation data.

Parameters

feval : function
 Custom evaluation function.

Returns

result : str
 Evaluation result list.

feature_name()

Get feature names.

Returns

result : array
 Array of feature names.

feature_importance(importance_type=”split”)

Get feature importances.

Parameters

importance_type : str, default "split"
How the importance is calculated: "split" or "gain"
"split" is the number of times a feature is used in a model
"gain" is the total gain of splits which use the feature

Returns

result : array
 Array of feature importances.

predict(data, num_iteration=-1, raw_score=False, pred_leaf=False, data_has_header=False, is_reshape=True)

Predict logic.

Parameters

data : str/numpy array/scipy.sparse
 Data source for prediction
 When data type is string, it represents the path of txt file
num_iteration : int
 Used iteration for prediction
raw_score : bool
 True for predict raw score
pred_leaf : bool
 True for predict leaf index
data_has_header : bool
 Used for txt data
is_reshape : bool
 Reshape to (nrow, ncol) if true

Returns

Prediction result

reset_parameter(params)

Reset parameters for booster.

Parameters

params : dict
 New parameters for boosters
silent : boolean, optional
 Whether print messages during construction

rollback_one_iter()

Rollback one iteration.

save_model(filename, num_iteration=-1)

Save model of booster to file.

Parameters

filename : str
 Filename to save
num_iteration : int
 Number of iteration that want to save. < 0 means save all

set_attr(**kwargs)

Set the attribute of the Booster.

Parameters

**kwargs
 The attributes to set. Setting a value to None deletes an attribute.

set_train_data_name(name)

Set training data name.

Parameters

name : str
 Name of training data.

update(train_set=None, fobj=None)

Update for one iteration.
Note: for multi-class task, the score is group by class_id first, then group by row_id
 if you want to get i-th row score in j-th class, the access way is score[j*num_data+i]
 and you should group grad and hess in this way as well.

Parameters

train_set :
 Training data, None means use last training data
fobj : function
 Customized objective function.

Returns

is_finished, bool

Training API

train(params, train_set, num_boost_round=100, valid_sets=None, valid_names=None, fobj=None, feval=None, init_model=None, feature_name=’auto’, categorical_feature=’auto’, early_stopping_rounds=None, evals_result=None, verbose_eval=True, learning_rates=None, callbacks=None)

Train with given parameters.

Parameters

params : dict
 Parameters for training.
train_set : Dataset
 Data to be trained.
num_boost_round: int
 Number of boosting iterations.
valid_sets: list of Datasets
 List of data to be evaluated during training
valid_names: list of str
 Names of valid_sets
fobj : function
 Customized objective function.
feval : function
 Customized evaluation function.
 Note: should return (eval_name, eval_result, is_higher_better) of list of this
init_model : file name of lightgbm model or 'Booster' instance
 model used for continued train
feature_name : list of str, or 'auto'
 Feature names
 If 'auto' and data is pandas DataFrame, use data columns name
categorical_feature : list of str or int, or 'auto'
 Categorical features,
 type int represents index,
 type str represents feature names (need to specify feature_name as well)
 If 'auto' and data is pandas DataFrame, use pandas categorical columns
early_stopping_rounds: int
 Activates early stopping.
 Requires at least one validation data and one metric
 If there's more than one, will check all of them
 Returns the model with (best_iter + early_stopping_rounds)
 If early stopping occurs, the model will add 'best_iteration' field
evals_result: dict or None
 This dictionary used to store all evaluation results of all the items in valid_sets.
 Example: with a valid_sets containing [valid_set, train_set]
 and valid_names containing ['eval', 'train']
 and a paramater containing ('metric':'logloss')
 Returns: {'train': {'logloss': ['0.48253', '0.35953', ...]},
 'eval': {'logloss': ['0.480385', '0.357756', ...]}}
 passed with None means no using this function
verbose_eval : bool or int
 Requires at least one item in evals.
 If `verbose_eval` is True,
 the eval metric on the valid set is printed at each boosting stage.
 If `verbose_eval` is int,
 the eval metric on the valid set is printed at every `verbose_eval` boosting stage.
 The last boosting stage
 or the boosting stage found by using `early_stopping_rounds` is also printed.
 Example: with verbose_eval=4 and at least one item in evals,
 an evaluation metric is printed every 4 (instead of 1) boosting stages.
learning_rates : list or function
 List of learning rate for each boosting round
 or a customized function that calculates learning_rate
 in terms of current number of round (e.g. yields learning rate decay)
 - list l: learning_rate = l[current_round]
 - function f: learning_rate = f(current_round)
callbacks : list of callback functions
 List of callback functions that are applied at each iteration.
 See Callbacks in Python-API.md for more information.

Returns

booster : a trained booster model

cv(params, train_set, num_boost_round=10, folds=None, nfold=5, stratified=False, shuffle=True, metrics=None, fobj=None, feval=None, init_model=None, feature_name=’auto’, categorical_feature=’auto’, early_stopping_rounds=None, fpreproc=None, verbose_eval=None, show_stdv=True, seed=0, callbacks=None)

Cross-validation with given paramaters.

Parameters

params : dict
 Booster params.
train_set : Dataset
 Data to be trained.
num_boost_round : int
 Number of boosting iterations.
folds : a generator or iterator of (train_idx, test_idx) tuples
 The train indices and test indices for each folds.
 This argument has highest priority over other data split arguments.
nfold : int
 Number of folds in CV.
stratified : bool
 Perform stratified sampling.
shuffle: bool
 Whether shuffle before split data.
metrics : str or list of str, default None
 Evaluation metrics to be watched in CV.
 If `metrics` is not None, the metric in `params` will be overridden.
fobj : function
 Custom objective function.
feval : function
 Custom evaluation function.
init_model : file name of lightgbm model or 'Booster' instance
 model used for continued train
feature_name : list of str, or 'auto'
 Feature names
 If 'auto' and data is pandas DataFrame, use data columns name
categorical_feature : list of str or int, or 'auto'
 Categorical features,
 type int represents index,
 type str represents feature names (need to specify feature_name as well)
 If 'auto' and data is pandas DataFrame, use pandas categorical columns
early_stopping_rounds: int
 Activates early stopping. CV error needs to decrease at least
 every <early_stopping_rounds> round(s) to continue.
 Last entry in evaluation history is the one from best iteration.
fpreproc : function
 Preprocessing function that takes (dtrain, dtest, param)
 and returns transformed versions of those.
verbose_eval : bool, int, or None, default None
 Whether to display the progress.
 If None, progress will be displayed when np.ndarray is returned.
 If True, progress will be displayed at boosting stage.
 If an integer is given,
 progress will be displayed at every given `verbose_eval` boosting stage.
show_stdv : bool, default True
 Whether to display the standard deviation in progress.
 Results are not affected, and always contains std.
seed : int
 Seed used to generate the folds (passed to numpy.random.seed).
callbacks : list of callback functions
 List of callback functions that are applied at end of each iteration.

Returns

evaluation history : list of str

Scikit-learn API

Common Methods

__init__(boosting_type=”gbdt”, num_leaves=31, max_depth=-1, learning_rate=0.1, n_estimators=10, max_bin=255, subsample_for_bin=50000, objective=”regression”, min_split_gain=0, min_child_weight=5, min_child_samples=10, subsample=1, subsample_freq=1, colsample_bytree=1, reg_alpha=0, reg_lambda=0, scale_pos_weight=1, is_unbalance=False, seed=0, nthread=-1, silent=True, sigmoid=1.0, huber_delta=1.0, gaussian_eta=1.0, fair_c=1.0, poisson_max_delta_step=0.7, max_position=20, label_gain=None, drop_rate=0.1, skip_drop=0.5, max_drop=50, uniform_drop=False, xgboost_dart_mode=False)

Implementation of the Scikit-Learn API for LightGBM.

Parameters

boosting_type : str
 gbdt, traditional Gradient Boosting Decision Tree
 dart, Dropouts meet Multiple Additive Regression Trees
num_leaves : int
 Maximum tree leaves for base learners.
max_depth : int
 Maximum tree depth for base learners, -1 means no limit.
learning_rate : float
 Boosting learning rate
n_estimators : int
 Number of boosted trees to fit.
max_bin : int
 Number of bucketed bin for feature values
subsample_for_bin : int
 Number of samples for constructing bins.
objective : str or callable
 Specify the learning task and the corresponding learning objective or
 a custom objective function to be used (see note below).
 default: binary for LGBMClassifier, regression for LGBMRegressor, lambdarank for LGBMRanker
min_split_gain : float
 Minimum loss reduction required to make a further partition on a leaf node of the tree.
min_child_weight : int
 Minimum sum of instance weight(hessian) needed in a child(leaf)
min_child_samples : int
 Minimum number of data need in a child(leaf)
subsample : float
 Subsample ratio of the training instance.
subsample_freq : int
 frequence of subsample, <=0 means no enable
colsample_bytree : float
 Subsample ratio of columns when constructing each tree.
reg_alpha : float
 L1 regularization term on weights
reg_lambda : float
 L2 regularization term on weights
scale_pos_weight : float
 Balancing of positive and negative weights.
is_unbalance : bool
 Is unbalance for binary classification
seed : int
 Random number seed.
nthread : int
 Number of parallel threads
silent : boolean
 Whether to print messages while running boosting.
sigmoid : float
 Only used in binary classification and lambdarank. Parameter for sigmoid function.
huber_delta : float
 Only used in regression. Parameter for Huber loss function.
gaussian_eta : float
 Only used in regression. Parameter for L1 and Huber loss function.
 It is used to control the width of Gaussian function to approximate hessian.
fair_c : float
 Only used in regression. Parameter for Fair loss function.
poisson_max_delta_step : float
 parameter used to safeguard optimization in Poisson regression.
max_position : int
 Only used in lambdarank, will optimize NDCG at this position.
label_gain : list of float
 Only used in lambdarank, relevant gain for labels.
 For example, the gain of label 2 is 3 if using default label gains.
 None (default) means use default value of CLI version: {0,1,3,7,15,31,63,...}.
drop_rate : float
 Only used when boosting_type='dart'. Probablity to select dropping trees.
skip_drop : float
 Only used when boosting_type='dart'. Probablity to skip dropping trees.
max_drop : int
 Only used when boosting_type='dart'. Max number of dropped trees in one iteration.
uniform_drop : bool
 Only used when boosting_type='dart'. If true, drop trees uniformly, else drop according to weights.
xgboost_dart_mode : bool
 Only used when boosting_type='dart'. Whether use xgboost dart mode.

Note

A custom objective function can be provided for the ``objective``
parameter. In this case, it should have the signature
``objective(y_true, y_pred) -> grad, hess``
 or ``objective(y_true, y_pred, group) -> grad, hess``:

 y_true: array_like of shape [n_samples]
 The target values
 y_pred: array_like of shape [n_samples] or shape[n_samples * n_class]
 The predicted values
 group: array_like
 group/query data, used for ranking task
 grad: array_like of shape [n_samples] or shape[n_samples * n_class]
 The value of the gradient for each sample point.
 hess: array_like of shape [n_samples] or shape[n_samples * n_class]
 The value of the second derivative for each sample point

for multi-class task, the y_pred is group by class_id first, then group by row_id
 if you want to get i-th row y_pred in j-th class, the access way is y_pred[j*num_data+i]
 and you should group grad and hess in this way as well

apply(X, num_iteration=0)

Return the predicted leaf every tree for each sample.

Parameters

X : array_like, shape=[n_samples, n_features]
 Input features matrix.

num_iteration : int
 Limit number of iterations in the prediction; defaults to 0 (use all trees).

Returns

X_leaves : array_like, shape=[n_samples, n_trees]

fit(X, y, sample_weight=None, init_score=None, group=None, eval_set=None, eval_names=None, eval_sample_weight=None, eval_init_score=None, eval_group=None, eval_metric=None, early_stopping_rounds=None, verbose=True, feature_name=’auto’, categorical_feature=’auto’, callbacks=None)

Fit the gradient boosting model.

Parameters

X : array_like
 Feature matrix
y : array_like
 Labels
sample_weight : array_like
 weight of training data
init_score : array_like
 init score of training data
group : array_like
 group data of training data
eval_set : list, optional
 A list of (X, y) tuple pairs to use as a validation set for early-stopping
eval_names: list of string
 Names of eval_set
eval_sample_weight : list or dict of array
 weight of eval data; if you use dict, the index should start from 0
eval_init_score : list or dict of array
 init score of eval data; if you use dict, the index should start from 0
eval_group : list or dict of array
 group data of eval data; if you use dict, the index should start from 0
eval_metric : str, list of str, callable, optional
 If a str, should be a built-in evaluation metric to use.
 If callable, a custom evaluation metric, see note for more details.
 default: logloss for LGBMClassifier, l2 for LGBMRegressor, ndcg for LGBMRanker
 Can directly use 'logloss' or 'error' for LGBMClassifier.
early_stopping_rounds : int
verbose : bool
 If `verbose` and an evaluation set is used, writes the evaluation
feature_name : list of str, or 'auto'
 Feature names
 If 'auto' and data is pandas DataFrame, use data columns name
categorical_feature : list of str or int, or 'auto'
 Categorical features,
 type int represents index,
 type str represents feature names (need to specify feature_name as well)
 If 'auto' and data is pandas DataFrame, use pandas categorical columns
callbacks : list of callback functions
 List of callback functions that are applied at each iteration.
 See Callbacks in Python-API.md for more information.

Note

Custom eval function expects a callable with following functions:
 ``func(y_true, y_pred)``, ``func(y_true, y_pred, weight)``
 or ``func(y_true, y_pred, weight, group)``.
 return (eval_name, eval_result, is_bigger_better)
 or list of (eval_name, eval_result, is_bigger_better)

 y_true: array_like of shape [n_samples]
 The target values
 y_pred: array_like of shape [n_samples] or shape[n_samples * n_class] (for multi-class)
 The predicted values
 weight: array_like of shape [n_samples]
 The weight of samples
 group: array_like
 group/query data, used for ranking task
 eval_name: str
 name of evaluation
 eval_result: float
 eval result
 is_bigger_better: bool
 is eval result bigger better, e.g. AUC is bigger_better.
for multi-class task, the y_pred is group by class_id first, then group by row_id
 if you want to get i-th row y_pred in j-th class, the access way is y_pred[j*num_data+i]

predict(X, raw_score=False, num_iteration=0)

Return the predicted value for each sample.

Parameters

X : array_like, shape=[n_samples, n_features]
 Input features matrix.

num_iteration : int
 Limit number of iterations in the prediction; defaults to 0 (use all trees).

Returns

predicted_result : array_like, shape=[n_samples] or [n_samples, n_classes]

Common Attributes

booster_

Get the underlying lightgbm Booster of this model.

evals_result_

Get the evaluation results.

feature_importances_

Get normailized feature importances.

LGBMClassifier

predict_proba(X, raw_score=False, num_iteration=0)

Return the predicted probability for each class for each sample.

Parameters

X : array_like, shape=[n_samples, n_features]
 Input features matrix.

num_iteration : int
 Limit number of iterations in the prediction; defaults to 0 (use all trees).

Returns

predicted_probability : array_like, shape=[n_samples, n_classes]

classes_

Get class label array.

n_classes_

Get number of classes.

LGBMRegressor

LGBMRanker

fit(X, y, sample_weight=None, init_score=None, group=None, eval_set=None, eval_names=None, eval_sample_weight=None, eval_init_score=None, eval_group=None, eval_metric=’ndcg’, eval_at=1, early_stopping_rounds=None, verbose=True, feature_name=’auto’, categorical_feature=’auto’, callbacks=None)

Most arguments are same as Common Methods except:

eval_at : int or list of int, default=1
 The evaulation positions of NDCG

Callbacks

Before iteration

reset_parameter(**kwargs)

Reset parameter after first iteration

NOTE: the initial parameter will still take in-effect on first iteration.

Parameters

**kwargs: value should be list or function
 List of parameters for each boosting round
 or a customized function that calculates learning_rate in terms of
 current number of round (e.g. yields learning rate decay)
 - list l: parameter = l[current_round]
 - function f: parameter = f(current_round)
Returns

callback : function
 The requested callback function.

After iteration

print_evaluation(period=1, show_stdv=True)

Create a callback that print evaluation result.
(Same function as `verbose_eval` in lightgbm.train())

Parameters

period : int
 The period to log the evaluation results

show_stdv : bool, optional
 Whether show standard deviation if provided

Returns

callback : function
 A callback that prints evaluation every period iterations.

record_evaluation(eval_result)

Create a call back that records the evaluation history into eval_result.
(Same function as `evals_result` in lightgbm.train())

Parameters

eval_result : dict
 A dictionary to store the evaluation results.

Returns

callback : function
 The requested callback function.

early_stopping(stopping_rounds, verbose=True)

Create a callback that activates early stopping.
To activates early stopping, at least one validation data and one metric is required.
If there's more than one, all of them will be checked.
(Same function as `early_stopping_rounds` in lightgbm.train())

Parameters

stopping_rounds : int
 The stopping rounds before the trend occur.

verbose : optional, bool
 Whether to print message about early stopping information.

Returns

callback : function
 The requested callback function.

Plotting

plot_importance(booster, ax=None, height=0.2, xlim=None, ylim=None, title=’Feature importance’, xlabel=’Feature importance’, ylabel=’Features’, importance_type=’split’, max_num_features=None, ignore_zero=True, figsize=None, grid=True, **kwargs):

Plot model feature importances.

Parameters

booster : Booster or LGBMModel
 Booster or LGBMModel instance.
ax : matplotlib Axes
 Target axes instance. If None, new figure and axes will be created.
height : float
 Bar height, passed to ax.barh().
xlim : tuple of 2 elements
 Tuple passed to axes.xlim().
ylim : tuple of 2 elements
 Tuple passed to axes.ylim().
title : str
 Axes title. Pass None to disable.
xlabel : str
 X axis title label. Pass None to disable.
ylabel : str
 Y axis title label. Pass None to disable.
importance_type : str
 How the importance is calculated: "split" or "gain".
 "split" is the number of times a feature is used in a model.
 "gain" is the total gain of splits which use the feature.
max_num_features : int
 Max number of top features displayed on plot.
 If None or smaller than 1, all features will be displayed.
ignore_zero : bool
 Ignore features with zero importance.
figsize : tuple of 2 elements
 Figure size.
grid : bool
 Whether add grid for axes.
**kwargs :
 Other keywords passed to ax.barh().

Returns

ax : matplotlib Axes

plot_metric(booster, metric=None, dataset_names=None, ax=None, xlim=None, ylim=None, title=’Metric during training’, xlabel=’Iterations’, ylabel=’auto’, figsize=None, grid=True):

Plot one metric during training.

Parameters

booster : dict or LGBMModel
 Evals_result recorded by lightgbm.train() or LGBMModel instance
metric : str or None
 The metric name to plot.
 Only one metric supported because different metrics have various scales.
 Pass None to pick `first` one (according to dict hashcode).
dataset_names : None or list of str
 List of the dataset names to plot.
 Pass None to plot all datasets.
ax : matplotlib Axes
 Target axes instance. If None, new figure and axes will be created.
xlim : tuple of 2 elements
 Tuple passed to axes.xlim()
ylim : tuple of 2 elements
 Tuple passed to axes.ylim()
title : str
 Axes title. Pass None to disable.
xlabel : str
 X axis title label. Pass None to disable.
ylabel : str
 Y axis title label. Pass None to disable. Pass 'auto' to use `metric`.
figsize : tuple of 2 elements
 Figure size
grid : bool
 Whether add grid for axes

Returns

ax : matplotlib Axes

plot_tree(booster, ax=None, tree_index=0, figsize=None, graph_attr=None, node_attr=None, edge_attr=None, show_info=None):

Plot specified tree.

Parameters

booster : Booster, LGBMModel
 Booster or LGBMModel instance.
ax : matplotlib Axes
 Target axes instance. If None, new figure and axes will be created.
tree_index : int, default 0
 Specify tree index of target tree.
figsize : tuple of 2 elements
 Figure size.
graph_attr: dict
 Mapping of (attribute, value) pairs for the graph.
node_attr: dict
 Mapping of (attribute, value) pairs set for all nodes.
edge_attr: dict
 Mapping of (attribute, value) pairs set for all edges.
show_info : list
 Information shows on nodes.
 options: 'split_gain', 'internal_value', 'internal_count' or 'leaf_count'.

Returns

ax : matplotlib Axes

create_tree_digraph(booster, tree_index=0, show_info=None, name=None, comment=None, filename=None, directory=None, format=None, engine=None, encoding=None, graph_attr=None, node_attr=None, edge_attr=None, body=None, strict=False):

Create a digraph of specified tree.

See:
 - http://graphviz.readthedocs.io/en/stable/api.html#digraph

Parameters

booster : Booster, LGBMModel
 Booster or LGBMModel instance.
tree_index : int, default 0
 Specify tree index of target tree.
show_info : list
 Information shows on nodes.
 options: 'split_gain', 'internal_value', 'internal_count' or 'leaf_count'.
name : str
 Graph name used in the source code.
comment : str
 Comment added to the first line of the source.
filename : str
 Filename for saving the source (defaults to name + '.gv').
directory : str
 (Sub)directory for source saving and rendering.
format : str
 Rendering output format ('pdf', 'png', ...).
engine : str
 Layout command used ('dot', 'neato', ...).
encoding : str
 Encoding for saving the source.
graph_attr : dict
 Mapping of (attribute, value) pairs for the graph.
node_attr : dict
 Mapping of (attribute, value) pairs set for all nodes.
edge_attr : dict
 Mapping of (attribute, value) pairs set for all edges.
body : list of str
 Iterable of lines to add to the graph body.
strict : bool
 Iterable of lines to add to the graph body.

Returns

graph : graphviz Digraph

 Refer to https://github.com/Microsoft/LightGBM/wiki/Installation-Guide.

Table/List of key modifications of LightGBM

The list includes the commits where the major feature added is considered working with the least amount of flaws. This is useful if you are trying to get a specific commit, such as the first properly working commit for categorical support.

Modification Table

| Date | Commit | Type | Description |
| — | — | — | — |
| 18/04/2017 | 7339ed6 [https://github.com/Microsoft/LightGBM/pull/426] | Feature | Whitespaces Removed from Features support (Pull Request 426)
| 14/04/2017 | 9224a9d [https://github.com/Microsoft/LightGBM/pull/415] | Release | GPU support (Pull Request 415)With original (0bb4a82 [https://github.com/Microsoft/LightGBM/pull/368] on 09/04/2017, Pull Request 368)
| 13/04/2017 | ab55910 [https://github.com/Microsoft/LightGBM/pull/404] | Feature | Speed Improvements for Prediction (Pull Request 404)
| 06/04/2017 | bfb0217 [https://github.com/Microsoft/LightGBM/pull/383] | Feature | Objective Transformations to the Objective (Pull Request 383)
| 05/04/2017 | d4c4d9a [https://github.com/Microsoft/LightGBM/pull/381] | Feature | Regression Speed Improvements (Pull Request 381)
| 03/04/2017 | b6c973a [https://github.com/Microsoft/LightGBM/pull/378] | Feature | Unloading Memory Fix support for R package (Pull Request 378)
| 17/03/2017 | 06a915a [https://github.com/Microsoft/LightGBM/pull/347] | Feature | RDS support for R pacakge (Pull Request 347)
| 10/03/2017 | b7e5f07 [https://github.com/Microsoft/LightGBM/pull/340] | Feature | Support Self-Contained R package (Pull Request 340)
| 02/03/2017 | 4d6ff28 [https://github.com/Microsoft/LightGBM/pull/330] | Feature | Feature Contribution Plot for R package (Pull Request 330)
| 01/03/2017 | 166421e [https://github.com/Microsoft/LightGBM/pull/328] | Feature | Feature Importance Plot for R package (Pull Request 328)
| 27/02/2017 | fddb52f [https://github.com/Microsoft/LightGBM/pull/323] | Feature | Feature Contribution for R package (Pull Request 323)
| 20/02/2017 | 10212b5 [https://github.com/Microsoft/LightGBM/pull/300] | Release | v2 (Pull Request 300)
| 12/02/2017 | ea6bc0a [https://github.com/Microsoft/LightGBM/pull/290] | Release | v1 (Pull Request 290)
| 02/02/2017 | 8c8ed6c [https://github.com/Microsoft/LightGBM/pull/275] | Feature | Docker support (Pull Request 275)
| 30/01/2017 | 4f3e9d8 [https://github.com/Microsoft/LightGBM/pull/270] | Feature | Poisson Objective support (Pull Request 270)
| 28/01/2017 | 5856554 [https://github.com/Microsoft/LightGBM/pull/266] | Feature | Plot Metric support for Python package (Pull Request 266)
| 25/01/2017 | 8980fc7 [https://github.com/Microsoft/LightGBM/pull/262] | Feature | Plot Tree support for Python package (Pull Request 262)With original (fafbcb3 [https://github.com/Microsoft/LightGBM/pull/258] on 25/01/2017, Pull Request 258)
| 20/01/2017 | abaefb5 [https://github.com/Microsoft/LightGBM/pull/237] | Feature | Feature Importance Plot for Python package (Pull Request 237)
| 16/01/2017 | a2ae838 [https://github.com/Microsoft/LightGBM/pull/229] | Feature | Categorical Feature support for R package (Pull Request 229)
| 16/01/2017 | 57d5527 [https://github.com/Microsoft/LightGBM/pull/218] | Feature | Pandas Categorical support for Python package (Pull Request 193)With original (a2ae838 [https://github.com/Microsoft/LightGBM/pull/193] on 12/01/2017, Pull Request 193)
| 10/01/2017 | fb732c3 [https://github.com/Microsoft/LightGBM/pull/180] | Feature | Fair Loss Objective support (Pull Request 180)
| 09/01/2017 | 27d3eb3 [https://github.com/Microsoft/LightGBM/pull/178] | Feature | Huber Loss Objective support (Pull Request 178)With original (a87af87 [https://github.com/Microsoft/LightGBM/pull/174] on 09/01/2017, Pull Request 174)
| 09/01/2017 | 9b2558d [https://github.com/Microsoft/LightGBM/pull/177] | Feature | devtools R Installation support (Pull Request 177)
| 09/01/2017 | 6219df7 [https://github.com/Microsoft/LightGBM/pull/175] | Feature | L1 Loss Objective support (Pull Request 175)
| 08/01/2017 | 551d59c [https://github.com/Microsoft/LightGBM/pull/168] | Release | R support (Pull Request 168)
| 05/01/2017 | 96d08f4 [https://github.com/Microsoft/LightGBM/pull/153] | Feature | PMML support (Pull Request 153)
| 01/01/2017 | a034cee [https://github.com/Microsoft/LightGBM/pull/151] | Feature | Pickle support for Python package (Pull Request 151)
| 26/12/2016 | 96cba41 [https://github.com/Microsoft/LightGBM/pull/139] | Parameter | DART xgboost support (Pull Request 139)
| 19/12/2016 | 99b483d [https://github.com/Microsoft/LightGBM/pull/133] | Parameter | Learning Rate in DART support (Pull Request 133)
| 01/12/2016 | 16d1853 [https://github.com/Microsoft/LightGBM/pull/94] | Release | Python support (Pull Request 94)
| 11/11/2016 | 98be7e3 [https://github.com/Microsoft/LightGBM/pull/67] | Feature | DART booster support (Pull Request 67)
| 08/11/2016 | 785398a [https://github.com/Microsoft/LightGBM/pull/69] | Parameter | L1 Regularization, L2 Regularization, Minimum Gain to Split support (Pull Request 69)
| 05/11/2016 | 1466f90 [https://github.com/Microsoft/LightGBM/pull/108] | Release | Categorical Feature support (Pull Request 108)
| 01/11/2016 | aa796a8 [https://github.com/Microsoft/LightGBM/pull/53] | Feature | Multiclass classification support (Pull Request 53)
| 28/10/2016 | c45d1d9 [https://github.com/Microsoft/LightGBM/pull/42] | Feature | Feature Importance support (Pull Request 42)
| 25/10/2016 | a6a75fe [https://github.com/Microsoft/LightGBM/pull/35] | Parameter | Maximum Depth support (Pull Request 35)
| 24/10/2016 | 9fe0dea [https://github.com/Microsoft/LightGBM/pull/30] | Parameter | Leaf Index Prediction support (Pull Request 30)
| 21/10/2016 | 7aaba32 [https://github.com/Microsoft/LightGBM/pull/27] | Parameter | Early Stopping support (Pull Request 27)With original (7d4b6d4 [https://github.com/Microsoft/LightGBM/pull/21] on 20/10/2017, Pull Request 21)
| 17/10/2016 | 65ddd85 [https://github.com/guFalcon/LightGBM/commit/65ddd852d8d160d86080c45512bd435d15837927] | Release | LightGBM compilable (Commit)

 Install LightGBM GPU version in Windows (CLI / R / Python), using MinGW/gcc

 This guide is for the MinGW build.

For the MSVC build with GPU, please refer to https://github.com/Microsoft/LightGBM/wiki/Installation-Guide#windows-2

Install LightGBM GPU version in Windows (CLI / R / Python), using MinGW/gcc

This is for a vanilla installation of Boost, including full compilation steps from source without precompiled libraries.

Installation steps (depends on what you are going to do):

	Install the appropriate OpenCL SDK

	Install MinGW

	Install Boost

	Install Git

	Install cmake

	Create LightGBM binaries

	Debugging LightGBM in CLI (if GPU is crashing or any other crash reason)

If you wish to use another compiler like Visual Studio C++ compiler, you need to adapt the steps to your needs.

For this compilation tutorial, I am using AMD SDK for our OpenCL steps. However, you are free to use any OpenCL SDK you want, you just need to adjust the PATH correctly.

You will also need administrator rights. This will not work without them.

At the end, you can restore your original PATH.

Modifying PATH (for newbies)

To modify PATH, just follow the pictures after going to the Control Panel:

[image: System]

Then, go to Advanced > Environment Variables...:

[image: Advanced System Settings]

Under System variables, the variable Path:

[image: Environment Variables]

Antivirus Performance Impact

Does not apply to you if you do not use a third-party antivirus nor the default preinstalled antivirus on Windows.

Windows Defender or any other antivirus will have a significant impact on the speed you will be able to perform the steps. It is recommended to turn them off temporarily until you finished with building and setting up everything, then turn them back on, if you are using them.

OpenCL SDK Installation

Installing the appropriate OpenCL SDK requires you to download the correct vendor source SDK. You need to know on what you are going to use LightGBM!:

	For running on Intel, get Intel SDK for OpenCL: https://software.intel.com/en-us/articles/opencl-drivers

	For running on AMD, get AMD APP SDK: http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/

	For running on NVIDIA, get CUDA Toolkit: https://developer.nvidia.com/cuda-downloads

Further reading and correspondnce table (especially if you intend to use cross-platform devices, like Intel CPU with AMD APP SDK): GPU SDK Correspondence and Device Targeting Table.

MinGW correct compiler selection

If you are expecting to use LightGBM without R, you need to install MinGW. Installing MinGW is straightforward, download this: http://iweb.dl.sourceforge.net/project/mingw-w64/Toolchains%20targetting%20Win32/Personal%20Builds/mingw-builds/installer/mingw-w64-install.exe

Make sure you are using the x86_64 architecture, and do not modify anything else. You may choose a version other than the most recent one if you need a previous MinGW version.

[image: MinGW installation]

Then, add to your PATH the following (to adjust to your MinGW version):

C:\Program Files\mingw-w64\x86_64-5.3.0-posix-seh-rt_v4-rev0\mingw64\bin

Warning: R users (even if you do not want LightGBM for R)

If you have RTools and MinGW installed, and wish to use LightGBM in R, get rid of MinGW from PATH (to keep: c:\Rtools\bin;c:\Rtools\mingw_32\bin for 32-bit R installation, c:\Rtools\bin;c:\Rtools\mingw_64\bin for 64-bit R installation).

You can check which MinGW version you are using by running the following in a command prompt: gcc -v:

[image: R MinGW used]

To check whether you need 32-bit or 64-bit MinGW for R, install LightGBM as usual and check for the following:

* installing *source* package 'lightgbm' ...
** libs
c:/Rtools/mingw_64/bin/g++

If it says mingw_64 then you need the 64-bit version (PATH with c:\Rtools\bin;c:\Rtools\mingw_64\bin), otherwise you need the 32-bit version (c:\Rtools\bin;c:\Rtools\mingw_32\bin), the latter being a very rare and untested case.

Quick installation of LightGBM can be done using:

devtools::install_github("Microsoft/LightGBM", subdir = "R-package")

Boost Compilation

Installing Boost requires to download Boost and to install it. It takes about 10 minutes to several hours depending on your CPU speed and network speed.

We will assume an installation in C:\boost and a general installation (like in Unix variants: without versioning and without type tags).

There is one mandatory step to check: the compiler.

	Warning: if you want the R installation: If you have already MinGW in your PATH variable, get rid of it (you will link to the wrong compiler otherwise).

	Warning: if you want the CLI installation: if you have already Rtools in your PATH variable, get rid of it (you will link to the wrong compiler otherwise).

	R installation must have Rtools in PATH

	CLI / Python installation must have MinGW (not Rtools) in PATH

In addition, assuming you are going to use C:\boost for the folder path, you should add now already the following to PATH: C:\boost\boost-build\bin;C:\boost\boost-build\include\boost. Adjust C:\boost if you install it elsewhere.

We can now start downloading and compiling the required Boost libraries:

	Download Boost here: http://www.boost.org/users/history/version_1_63_0.html (boost_1_63_0.zip).

	Extract the archive to C:\boost.

	Open a command prompt, and run cd C:\boost\boost_1_63_0\tools\build.

	In command prompt, run bootstrap.bat gcc.

	In command prompt, run b2 install --prefix="C:\boost\boost-build" toolset=gcc.

	In command prompt, run cd C:\boost\boost_1_63_0.

To build the Boost libraries, you have two choices for command prompt:

	If you have only one single core, you can use the default b2 install --build_dir="C:\boost\boost-build" --prefix="C:\boost\boost-build" toolset=gcc --with=filesystem,system threading=multi --layout=system release.

	If you want to do a multithreaded library building (faster), add -j N by replacing N by the number of cores/threads you have. For instance, for 2 cores, you would do b2 install --build_dir="C:\boost\boost-build" --prefix="C:\boost\boost-build" toolset=gcc --with=filesystem,system threading=multi --layout=system release -j 2

Ignore all the errors popping up, like Python, etc., they do not matter for us.

Your folder should look like this at the end (not fully detailed):

- C
 |--- boost
 |------ boost_1_63_0
 |--------- some folders and files
 |------ boost-build
 |--------- bin
 |--------- include
 |------------ boost
 |------ lib
 |------ share

This is what you should (approximately) get at the end of Boost compilation:

[image: Boost compiled]

Git Installation

Installing Git for Windows is straightforward, use the following link: https://git-for-windows.github.io/

[image: git for Windows]

Then, click on the big Download button, you can’t miss it.

Now, we can fetch LightGBM repository for GitHub. Run Git Bash and the following command:

cd C:/
mkdir github_repos
cd github_repos
git clone --recursive https://github.com/Microsoft/LightGBM

Your LightGBM repository copy should now be under C:\github_repos\LightGBM. You are free to use any folder you want, but you have to adapt.

Keep Git Bash open.

cmake Installation, Configuration, Generation

CLI / Python users only

Installing cmake requires one download first and then a lot of configuration for LightGBM:

[image: Downloading cmake]

	Download cmake 3.8.0 here: https://cmake.org/download/.

	Install cmake.

	Run cmake-gui.

	Select the folder where you put LightGBM for Where is the source code, default using our steps would be C:/github_repos/LightGBM.

	Copy the folder name, and add /build for “Where to build the binaries”, default using our steps would be C:/github_repos/LightGBM/build.

	Click Configure.

[image: Create directory]

[image: MinGW makefiles to use]

	Lookup for USE_GPU and check the checkbox

[image: Use GPU]

	Click Configure

You should get (approximately) the following after clicking Configure:

[image: Configured LightGBM]

Looking for CL_VERSION_2_0
Looking for CL_VERSION_2_0 - found
Found OpenCL: C:/Windows/System32/OpenCL.dll (found version "2.0")
OpenCL include directory:C:/Program Files (x86)/AMD APP SDK/3.0/include
Boost version: 1.63.0
Found the following Boost libraries:
 filesystem
 system
Configuring done

	Click Generate to get the following message:

Generating done

This is straightforward, as cmake is providing a large help into locating the correct elements.

LightGBM Compilation (CLI: final step)

Installation in CLI

CLI / Python users

Creating LightGBM libraries is very simple as all the important and hard steps were done before.

You can do everything in the Git Bash console you left open:

	If you closed Git Bash console previously, run this to get back to the build folder: cd C:/github_repos/LightGBM/build

	If you did not close the Git Bash console previously, run this to get to the build folder: cd LightGBM/build

	Setup MinGW as make using alias make='mingw32-make' (otherwise, beware error and name clash!).

	In Git Bash, run make and see LightGBM being installing!

[image: LightGBM with GPU support compiled]

If everything was done correctly, you now compiled CLI LightGBM with GPU support!

Testing in CLI

You can now test LightGBM directly in CLI in a command prompt (not Git Bash):

cd C:/github_repos/LightGBM/examples/binary_classification
"../../lightgbm.exe" config=train.conf data=binary.train valid=binary.test objective=binary device=gpu

[image: LightGBM in CLI with GPU]

Congratulations for reaching this stage!

To learn how to target a correct CPU or GPU for training, please see: GPU SDK Correspondence and Device Targeting Table.

LightGBM Setup and Installation for Python (Python: final step)

Installation in Python

Python users, extra steps

Installing in Python is as straightforward as CLI. Assuming you already have numpy, scipy, scikit-learn, and setuptools, run the following in the Git Console:

cd C:/github_repos/LightGBM/python-package/
python setup.py install

[image: LightGBM with GPU support in Python]

Testing in Python

You can try to run the following demo script in Python to test if it works:

import lightgbm as lgb
import pandas as pd
import os

load or create your dataset
print('Load data...')
os.chdir('C:/github_repos/LightGBM/examples/regression')
df_train = pd.read_csv('regression.train', header=None, sep='\t')
df_test = pd.read_csv('regression.test', header=None, sep='\t')

y_train = df_train[0].values
y_test = df_test[0].values
X_train = df_train.drop(0, axis=1).values
X_test = df_test.drop(0, axis=1).values

create dataset for lightgbm
lgb_train = lgb.Dataset(X_train, y_train)
lgb_eval = lgb.Dataset(X_test, y_test, reference=lgb_train)

specify your configurations as a dict
params = {
 'task': 'train',
 'objective': 'regression',
 'metric': 'l2',
 'verbose': 2,
 'device': 'gpu'
}

print('Start training...')
train
gbm = lgb.train(params,
 lgb_train,
 num_boost_round=20,
 valid_sets=lgb_eval,
 early_stopping_rounds=5)

[image: LightGBM GPU in Python]

Congratulations for reaching this stage!

To learn how to target a correct CPU or GPU for training, please see: GPU SDK Correspondence and Device Targeting Table.

LightGBM Setup and Installation for R (R: final step)

Preparation for R

R users

This gets a bit complicated for this step.

First of all, you need to to find the correct paths for the following, and keep them in a notepad:

	BOOST_INCLUDE_DIR = "C:/boost/boost-build/include": if you followed the instructions, it is C:/boost/boost-build/include.

	BOOST_LIBRARY = "C:/boost/boost-build/lib": if you followed the instructions, it is C:/boost/boost-build/lib.

	OpenCL_INCLUDE_DIR = "C:/Program Files (x86)/AMD APP SDK/3.0/include": this varies, it must be the OpenCL SDK folder containing the file CL/CL.h (caps do not matter). For instance, using AMD APP SDK, it becomes C:/Program Files (x86)/AMD APP SDK/3.0/include.

	OpenCL_LIBRARY = "C:/Program Files (x86)/AMD APP SDK/3.0/lib/x86_64": this varies, it must be the OpenCL SDK folder containing the file OpenCL.lib (caps do not matter). For instance, using AMD APP SDK, it becomes C:/Program Files (x86)/AMD APP SDK/3.0/lib/x86_64.

Second, you need to find out where is Makeconf, as it is the essential file you will need to use to specify the PATH for R. Run the following code to get the file path to your Makeconf file:

file.path(R.home("etc"), "Makeconf"))

For instance, "C:/PROGRA~1/MIE74D~1/RCLIEN~1/R_SERVER/etc/Makeconf" means "C:\Program Files\Microsoft\R_Client\R_SERVER\etc\Makeconf".

Third, edit the Makeconf file as an Administrator. Remember the first step we had to do where we store four different values in a notepad? We apply them right now.

For instance, for this installation and using AMD OpenCL SDK, we are doing the following below LINKFLAGS:

BOOST_INCLUDE_DIR = "C:/boost/boost-build/include"
BOOST_LIBRARY = "C:/boost/boost-build/lib"
OpenCL_INCLUDE_DIR = "C:/Program Files (x86)/AMD APP SDK/3.0/include"
OpenCL_LIBRARY = "C:/Program Files (x86)/AMD APP SDK/3.0/lib/x86_64"

[image: Getting R Makeconf]

From there, you have two solutions:

	Installation Method 1 (hard): Use your local LightGBM repository with the latest and recent development features

	Installation Method 2 (easy): Use ez_lgb, Laurae2/LightGBM ‘s repository [https://github.com/Laurae2/LightGBM] for installing LightGBM easily, but it might not be up to date. It uses compute to patch boostorg/compute#704 (boostorg/compute@6de7f64)

Installation Method 1

Edit 1 to do: you need to include proper GPU compilation support to the R package by adding the following to R-package\src\lightgbm-all.cpp:

// gpu support
#include "../../src/treelearner/gpu_tree_learner.cpp"

The lightgbm-all.cpp becomes:

// application
#include "../../src/application/application.cpp"

// boosting
#include "../../src/boosting/boosting.cpp"
#include "../../src/boosting/gbdt.cpp"

// io
#include "../../src/io/bin.cpp"
#include "../../src/io/config.cpp"
#include "../../src/io/dataset.cpp"
#include "../../src/io/dataset_loader.cpp"
#include "../../src/io/metadata.cpp"
#include "../../src/io/parser.cpp"
#include "../../src/io/tree.cpp"

// metric
#include "../../src/metric/dcg_calculator.cpp"
#include "../../src/metric/metric.cpp"

// network
#include "../../src/network/linker_topo.cpp"
#include "../../src/network/linkers_socket.cpp"
#include "../../src/network/network.cpp"

// objective
#include "../../src/objective/objective_function.cpp"

// treelearner
#include "../../src/treelearner/data_parallel_tree_learner.cpp"
#include "../../src/treelearner/feature_parallel_tree_learner.cpp"
#include "../../src/treelearner/serial_tree_learner.cpp"
#include "../../src/treelearner/tree_learner.cpp"
#include "../../src/treelearner/voting_parallel_tree_learner.cpp"

// c_api
#include "../../src/c_api.cpp"

// gpu support
#include "../../src/treelearner/gpu_tree_learner.cpp"

Edit 2 to do: you need to edit the Makevars.win in R-package\src appropriately by overwriting the following flags (LGBM_RFLAGS, PKG_CPPFLAGS, PKG_LIBS) with the following:

LGBM_RFLAGS = -DUSE_SOCKET -DUSE_GPU=1

PKG_CPPFLAGS= -I$(PKGROOT)/include -I$(BOOST_INCLUDE_DIR) -I$(OpenCL_INCLUDE_DIR) -I../compute/include $(LGBM_RFLAGS)

PKG_LIBS = $(SHLIB_OPENMP_CFLAGS) $(SHLIB_PTHREAD_FLAGS) -lws2_32 -liphlpapi -L$(BOOST_LIBRARY) -lboost_filesystem -lboost_system -L$(OpenCL_LIBRARY) -lOpenCL

Your Makevars.win will look like this:

[image: Makevars look]

Or, copy & paste this:

package root
PKGROOT=../../

ENABLE_STD_THREAD=1
CXX_STD = CXX11

LGBM_RFLAGS = -DUSE_SOCKET -DUSE_GPU=1

PKG_CPPFLAGS= -I$(PKGROOT)/include -I$(BOOST_INCLUDE_DIR) -I$(OpenCL_INCLUDE_DIR) -I../compute/include $(LGBM_RFLAGS)
PKG_CXXFLAGS= $(SHLIB_OPENMP_CFLAGS) $(SHLIB_PTHREAD_FLAGS) -std=c++11
PKG_LIBS = $(SHLIB_OPENMP_CFLAGS) $(SHLIB_PTHREAD_FLAGS) -lws2_32 -liphlpapi -L$(BOOST_LIBRARY) -lboost_filesystem -lboost_system -L$(OpenCL_LIBRARY) -lOpenCL
OBJECTS = ./lightgbm-all.o ./lightgbm_R.o

Now, we need to install LightGBM as usual:

	Open an interactive R console.

	Assuming you have the LightGBM folder in C:/LightGBM, run devtools::install("C:/github_repos/LightGBM/R-package").

[image: LightGBM installed with GPU support]

Installation Method 2

This is very simple, as you only need to open an R interactive console and run:

devtools::install_github("Laurae2/LightGBM", subdir = "R-package")

It will install automatically LightGBM for R with GPU support, without the need to edit manually the Makevars.win and lightgbm-all.cpp.

Laurae’s LightGBM has all the steps of installation method 1 done for you. Therefore, this is a GPU-only version. You can check how many days it is behind Microsoft/LightGBM master branch and the latest master branch commit made here:

[image: image]

Self-contained packages are not provided are untested. It might work but it was untested, and requires to modify the fullcode files instead of the regular files (lightgbm-fullcode.cpp and Makevars_fullcode.win).

Testing in R

When you run LightGBM with a specific amount of bins, it will create the appropriate kernels. This will be obviously leading to poor performance during the first usages of LightGBM. But once the kernels are built for the number of bins you are using, you do not have to care about building them again.

Test GPU support with the following:

library(lightgbm)
data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
data(agaricus.test, package = "lightgbm")
test <- agaricus.test
dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)
params <- list(objective = "regression", metric = "l2", device = "gpu")
valids <- list(test = dtest)
model <- lgb.train(params,
 dtrain,
 100,
 valids,
 min_data = 1,
 learning_rate = 1,
 early_stopping_rounds = 10)

[image: LightGBM with GPU support running]

Congratulations for reaching this stage!

To learn how to target a correct CPU or GPU for training, please see: GPU SDK Correspondence and Device Targeting Table.

Debugging LightGBM crashes in CLI

Now that you compiled LightGBM, you try it... and you always see a segmentation fault or an undocumented crash with GPU support:

[image: Segmentation Fault]

Please check you are using the right device and whether it works with the default gpu_device_id = 0 and gpu_platform_id = 0. If it still does not work with the default values, then you should follow all the steps below.

You will have to redo the compilation steps for LightGBM to add debugging mode. This involves:

	Deleting C:/github_repos/LightGBM/build folder

	Deleting lightgbm.exe, lib_lightgbm.dll, and lib_lightgbm.dll.a files

[image: Files to remove]

Once you removed the file, go into cmake, and follow the usual steps. Before clicking “Generate”, click on “Add Entry”:

[image: Added manual entry in cmake]

In addition, click on Configure and Generate:

[image: Configured and Generated cmake]

And then, follow the regular LightGBM CLI installation from there.

Once you have installed LightGBM CLI, assuming your LightGBM is in C:\github_repos\LightGBM, open a command prompt and run the following:

gdb --args "../../lightgbm.exe" config=train.conf data=binary.train valid=binary.test objective=binary device=gpu

[image: Debug run]

Type run and Enter key.

You will probably get something similar to this:

[LightGBM] [Info] This is the GPU trainer!!
[LightGBM] [Info] Total Bins 6143
[LightGBM] [Info] Number of data: 7000, number of used features: 28
[New Thread 105220.0x1a62c]
[LightGBM] [Info] Using GPU Device: Oland, Vendor: Advanced Micro Devices, Inc.
[LightGBM] [Info] Compiling OpenCL Kernel with 256 bins...

Program received signal SIGSEGV, Segmentation fault.
0x00007ffbb37c11f1 in strlen () from C:\Windows\system32\msvcrt.dll
(gdb)

There, write backtrace and Enter key as many times as gdb requests two choices:

Program received signal SIGSEGV, Segmentation fault.
0x00007ffbb37c11f1 in strlen () from C:\Windows\system32\msvcrt.dll
(gdb) backtrace
#0 0x00007ffbb37c11f1 in strlen () from C:\Windows\system32\msvcrt.dll
#1 0x000000000048bbe5 in std::char_traits<char>::length (__s=0x0)
 at C:/PROGRA~1/MINGW-~1/X86_64~1.0-P/mingw64/x86_64-w64-mingw32/include/c++/bits/char_traits.h:267
#2 std::operator+<char, std::char_traits<char>, std::allocator<char> > (__rhs="\\", __lhs=0x0)
 at C:/PROGRA~1/MINGW-~1/X86_64~1.0-P/mingw64/x86_64-w64-mingw32/include/c++/bits/basic_string.tcc:1157
#3 boost::compute::detail::appdata_path[abi:cxx11]() () at C:/boost/boost-build/include/boost/compute/detail/path.hpp:38
#4 0x000000000048eec3 in boost::compute::detail::program_binary_path (hash="d27987d5bd61e2d28cd32b8d7a7916126354dc81", create=create@entry=false)
 at C:/boost/boost-build/include/boost/compute/detail/path.hpp:46
#5 0x00000000004913de in boost::compute::program::load_program_binary (hash="d27987d5bd61e2d28cd32b8d7a7916126354dc81", ctx=...)
 at C:/boost/boost-build/include/boost/compute/program.hpp:605
#6 0x0000000000490ece in boost::compute::program::build_with_source (
 source="\n#ifndef _HISTOGRAM_256_KERNEL_\n#define _HISTOGRAM_256_KERNEL_\n\n#pragma OPENCL EXTENSION cl_khr_local_int32_base_atomics : enable\n#pragma OPENC
L EXTENSION cl_khr_global_int32_base_atomics : enable\n\n//"..., context=...,
 options=" -D POWER_FEATURE_WORKGROUPS=5 -D USE_CONSTANT_BUF=0 -D USE_DP_FLOAT=0 -D CONST_HESSIAN=0 -cl-strict-aliasing -cl-mad-enable -cl-no-signed-zeros -c
l-fast-relaxed-math") at C:/boost/boost-build/include/boost/compute/program.hpp:549
#7 0x0000000000454339 in LightGBM::GPUTreeLearner::BuildGPUKernels () at C:\LightGBM\src\treelearner\gpu_tree_learner.cpp:583
#8 0x00000000636044f2 in libgomp-1!GOMP_parallel () from C:\Program Files\mingw-w64\x86_64-5.3.0-posix-seh-rt_v4-rev0\mingw64\bin\libgomp-1.dll
#9 0x0000000000455e7e in LightGBM::GPUTreeLearner::BuildGPUKernels (this=this@entry=0x3b9cac0)
 at C:\LightGBM\src\treelearner\gpu_tree_learner.cpp:569
#10 0x0000000000457b49 in LightGBM::GPUTreeLearner::InitGPU (this=0x3b9cac0, platform_id=<optimized out>, device_id=<optimized out>)
 at C:\LightGBM\src\treelearner\gpu_tree_learner.cpp:720
#11 0x0000000000410395 in LightGBM::GBDT::ResetTrainingData (this=0x1f26c90, config=<optimized out>, train_data=0x1f28180, objective_function=0x1f280e0,
 training_metrics=std::vector of length 2, capacity 2 = {...}) at C:\LightGBM\src\boosting\gbdt.cpp:98
#12 0x0000000000402e93 in LightGBM::Application::InitTrain (this=this@entry=0x23f9d0) at C:\LightGBM\src\application\application.cpp:213
---Type <return> to continue, or q <return> to quit---
#13 0x00000000004f0b55 in LightGBM::Application::Run (this=0x23f9d0) at C:/LightGBM/include/LightGBM/application.h:84
#14 main (argc=6, argv=0x1f21e90) at C:\LightGBM\src\main.cpp:7

Right-click the command prompt, click “Mark”, and select all the text from the first line (with the command prompt containing gdb) to the last line printed, containing all the log, such as:

C:\LightGBM\examples\binary_classification>gdb --args "../../lightgbm.exe" config=train.conf data=binary.train valid=binary.test objective=binary device
=gpu
GNU gdb (GDB) 7.10.1
Copyright (C) 2015 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-w64-mingw32".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word"...
Reading symbols from ../../lightgbm.exe...done.
(gdb) run
Starting program: C:\LightGBM\lightgbm.exe "config=train.conf" "data=binary.train" "valid=binary.test" "objective=binary" "device=gpu"
[New Thread 105220.0x199b8]
[New Thread 105220.0x783c]
[Thread 105220.0x783c exited with code 0]
[LightGBM] [Info] Finished loading parameters
[New Thread 105220.0x19490]
[New Thread 105220.0x1a71c]
[New Thread 105220.0x19a24]
[New Thread 105220.0x4fb0]
[Thread 105220.0x4fb0 exited with code 0]
[LightGBM] [Info] Loading weights...
[New Thread 105220.0x19988]
[Thread 105220.0x19988 exited with code 0]
[New Thread 105220.0x1a8fc]
[Thread 105220.0x1a8fc exited with code 0]
[LightGBM] [Info] Loading weights...
[New Thread 105220.0x1a90c]
[Thread 105220.0x1a90c exited with code 0]
[LightGBM] [Info] Finished loading data in 1.011408 seconds
[LightGBM] [Info] Number of positive: 3716, number of negative: 3284
[LightGBM] [Info] This is the GPU trainer!!
[LightGBM] [Info] Total Bins 6143
[LightGBM] [Info] Number of data: 7000, number of used features: 28
[New Thread 105220.0x1a62c]
[LightGBM] [Info] Using GPU Device: Oland, Vendor: Advanced Micro Devices, Inc.
[LightGBM] [Info] Compiling OpenCL Kernel with 256 bins...

Program received signal SIGSEGV, Segmentation fault.
0x00007ffbb37c11f1 in strlen () from C:\Windows\system32\msvcrt.dll
(gdb) backtrace
#0 0x00007ffbb37c11f1 in strlen () from C:\Windows\system32\msvcrt.dll
#1 0x000000000048bbe5 in std::char_traits<char>::length (__s=0x0)
 at C:/PROGRA~1/MINGW-~1/X86_64~1.0-P/mingw64/x86_64-w64-mingw32/include/c++/bits/char_traits.h:267
#2 std::operator+<char, std::char_traits<char>, std::allocator<char> > (__rhs="\\", __lhs=0x0)
 at C:/PROGRA~1/MINGW-~1/X86_64~1.0-P/mingw64/x86_64-w64-mingw32/include/c++/bits/basic_string.tcc:1157
#3 boost::compute::detail::appdata_path[abi:cxx11]() () at C:/boost/boost-build/include/boost/compute/detail/path.hpp:38
#4 0x000000000048eec3 in boost::compute::detail::program_binary_path (hash="d27987d5bd61e2d28cd32b8d7a7916126354dc81", create=create@entry=false)
 at C:/boost/boost-build/include/boost/compute/detail/path.hpp:46
#5 0x00000000004913de in boost::compute::program::load_program_binary (hash="d27987d5bd61e2d28cd32b8d7a7916126354dc81", ctx=...)
 at C:/boost/boost-build/include/boost/compute/program.hpp:605
#6 0x0000000000490ece in boost::compute::program::build_with_source (
 source="\n#ifndef _HISTOGRAM_256_KERNEL_\n#define _HISTOGRAM_256_KERNEL_\n\n#pragma OPENCL EXTENSION cl_khr_local_int32_base_atomics : enable\n#pragma OPENC
L EXTENSION cl_khr_global_int32_base_atomics : enable\n\n//"..., context=...,
 options=" -D POWER_FEATURE_WORKGROUPS=5 -D USE_CONSTANT_BUF=0 -D USE_DP_FLOAT=0 -D CONST_HESSIAN=0 -cl-strict-aliasing -cl-mad-enable -cl-no-signed-zeros -c
l-fast-relaxed-math") at C:/boost/boost-build/include/boost/compute/program.hpp:549
#7 0x0000000000454339 in LightGBM::GPUTreeLearner::BuildGPUKernels () at C:\LightGBM\src\treelearner\gpu_tree_learner.cpp:583
#8 0x00000000636044f2 in libgomp-1!GOMP_parallel () from C:\Program Files\mingw-w64\x86_64-5.3.0-posix-seh-rt_v4-rev0\mingw64\bin\libgomp-1.dll
#9 0x0000000000455e7e in LightGBM::GPUTreeLearner::BuildGPUKernels (this=this@entry=0x3b9cac0)
 at C:\LightGBM\src\treelearner\gpu_tree_learner.cpp:569
#10 0x0000000000457b49 in LightGBM::GPUTreeLearner::InitGPU (this=0x3b9cac0, platform_id=<optimized out>, device_id=<optimized out>)
 at C:\LightGBM\src\treelearner\gpu_tree_learner.cpp:720
#11 0x0000000000410395 in LightGBM::GBDT::ResetTrainingData (this=0x1f26c90, config=<optimized out>, train_data=0x1f28180, objective_function=0x1f280e0,
 training_metrics=std::vector of length 2, capacity 2 = {...}) at C:\LightGBM\src\boosting\gbdt.cpp:98
#12 0x0000000000402e93 in LightGBM::Application::InitTrain (this=this@entry=0x23f9d0) at C:\LightGBM\src\application\application.cpp:213
---Type <return> to continue, or q <return> to quit---
#13 0x00000000004f0b55 in LightGBM::Application::Run (this=0x23f9d0) at C:/LightGBM/include/LightGBM/application.h:84
#14 main (argc=6, argv=0x1f21e90) at C:\LightGBM\src\main.cpp:7

And open an issue in GitHub here with that log: https://github.com/Microsoft/LightGBM/issues

 GPU Tuning Guide and Performance Comparison

GPU Tuning Guide and Performance Comparison

How it works?

In LightGBM, the main computation cost during training is building the feature
histograms. We use an efficient algorithm on GPU to accelerate this process.
The implementation is highly modular, and works for all learning tasks
(classification, ranking, regression, etc). GPU acceleration also works in
distributed learning settings. GPU algorithm implementation is based on OpenCL
and can work with a wide range of GPUs.

Supported Hardware

We target AMD Graphics Core Next (GCN) architecture and NVIDIA
Maxwell and Pascal architectures. Most AMD GPUs released after 2012 and NVIDIA
GPUs released after 2014 should be supported. We have tested the GPU
implementation on the following GPUs:

	AMD RX 480 with AMDGPU-pro driver 16.60 on Ubuntu 16.10

	AMD R9 280X (aka Radeon HD 7970) with fglrx driver 15.302.2301 on Ubuntu 16.10

	NVIDIA GTX 1080 with driver 375.39 and CUDA 8.0 on Ubuntu 16.10

	NVIDIA Titan X (Pascal) with driver 367.48 and CUDA 8.0 on Ubuntu 16.04

	NVIDIA Tesla M40 with driver 375.39 and CUDA 7.5 on Ubuntu 16.04

Using the following hardware is discouraged:

	NVIDIA Kepler (K80, K40, K20, most GeForce GTX 700 series GPUs) or earlier
NVIDIA GPUs. They don’t support hardware atomic operations in local memory space
and thus histogram construction will be slow.

	AMD VLIW4-based GPUs, including Radeon HD 6xxx series and earlier GPUs. These
GPUs have been discontinued for years and are rarely seen nowadays.

How to Achieve Good Speedup on GPU

	You want to run a few datasets that we have verified with good speedup
(including Higgs, epsilon, Bosch, etc) to ensure your
setup is correct. If you have multiple GPUs, make sure to set
gpu_platform_id and gpu_device_id to use the desired GPU.
Also make sure your system is idle (especially when using a
shared computer) to get accuracy performance measurements.

	GPU works best on large scale and dense datasets. If dataset is too small,
computing it on GPU is inefficient as the data transfer overhead can be
significant. For dataset with a mixture of sparse and dense features, you
can control the sparse_threshold parameter to make sure there are enough
dense features to process on the GPU. If you have categorical features, use
the categorical_column option and input them into LightGBM directly; do
not convert them into one-hot variables. Make sure to check the run log and
look at the reported number of sparse and dense features.

	To get good speedup with GPU, it is suggested to use a smaller number of
bins. Setting max_bin=63 is recommended, as it usually does not
noticeably affect training accuracy on large datasets, but GPU training can
be significantly faster than using the default bin size of 255. For some
dataset, even using 15 bins is enough (max_bin=15); using 15 bins will
maximize GPU performance. Make sure to check the run log and verify that the
desired number of bins is used.

	Try to use single precision training (gpu_use_dp=false) when possible,
because most GPUs (especially NVIDIA consumer GPUs) have poor
double-precision performance.

Performance Comparison

We evaluate the training performance of GPU acceleration on the following datasets:

Data	Task	Link	#Examples	#Feature	Comments
———-	—————	——-	——-	———	———
Higgs	Binary classification	link [https://archive.ics.uci.edu/ml/datasets/HIGGS]	10,500,000	28	use last 500,000 samples as test set
Epsilon	Binary classification	link [http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html]	400,000	2,000	use the provided test set
Bosch	Binary classification	link [https://www.kaggle.com/c/bosch-production-line-performance/data]	1,000,000	968	use the provided test set
Yahoo LTR	Learning to rank	link [https://webscope.sandbox.yahoo.com/catalog.php?datatype=c]	473,134	700	set1.train as train, set1.test as test
MS LTR	Learning to rank	link [http://research.microsoft.com/en-us/projects/mslr/]	2,270,296	137	{S1,S2,S3} as train set, {S5} as test set
Expo	Binary classification (Categorical)	link [http://stat-computing.org/dataexpo/2009/]	11,000,000	700	use last 1,000,000 as test set

We used the following hardware to evaluate the performance of LightGBM GPU training.
Our CPU reference is a high-end dual socket Haswell-EP Xeon server with 28 cores;
GPUs include a budget GPU (RX 480) and a mainstream (GTX 1080) GPU installed on
the same server. It is worth mentioning that the GPUs used are not the best GPUs in
the market; if you are using a better GPU (like AMD RX 580, NVIDIA GTX 1080 Ti,
Titan X Pascal, Titan Xp, Tesla P100, etc), you are likely to get a better speedup.

Hardware	Peak FLOPS	Peak Memory BW	Cost (MSRP)
——————————	————–	—————-	————-
AMD Radeon RX 480	5,161 GFLOPS	256 GB/s	$199
NVIDIA GTX 1080	8,228 GFLOPS	320 GB/s	$499
2x Xeon E5-2683v3 (28 cores)	1,792 GFLOPS	133 GB/s	$3,692

During benchmarking on CPU we used only 28 physical cores of the CPU, and did
not use hyper-threading cores, because we found that using too many threads
actually makes performance worse. The following shows the training configuration we used:

max_bin = 63
num_leaves = 255
num_iterations = 500
learning_rate = 0.1
tree_learner = serial
task = train
is_train_metric = false
min_data_in_leaf = 1
min_sum_hessian_in_leaf = 100
ndcg_eval_at = 1,3,5,10
sparse_threshold=1.0
device = gpu
gpu_platform_id = 0
gpu_device_id = 0
num_thread = 28

We use the configuration shown above, except for the
Bosch dataset, we use a smaller learning_rate=0.015 and set
min_sum_hessian_in_leaf=5. For all GPU training we set
sparse_threshold=1, and vary the max number of bins (255, 63 and 15). The
GPU implementation is from commit
0bb4a82 [https://github.com/Microsoft/LightGBM/commit/0bb4a82]
of LightGBM, when the GPU support was just merged in.

The following table lists the accuracy on test set that CPU and GPU learner
can achieve after 500 iterations. GPU with the same number of bins can achieve
a similar level of accuracy as on the CPU, despite using single precision
arithmetic. For most datasets, using 63 bins is sufficient.

	CPU 255 bins	CPU 63 bins	CPU 15 bins	GPU 255 bins	GPU 63 bins	GPU 15 bins
——————-	————–	————-	————-	————–	————-	————-
Higgs AUC	0.845612	0.845239	0.841066	0.845612	0.845209	0.840748
Epsilon AUC	0.950243	0.949952	0.948365	0.950057	0.949876	0.948365
Yahoo-LTR NDCG@1	0.730824	0.730165	0.729647	0.730936	0.732257	0.73114
Yahoo-LTR NDCG@3	0.738687	0.737243	0.736445	0.73698	0.739474	0.735868
Yahoo-LTR NDCG@5	0.756609	0.755729	0.754607	0.756206	0.757007	0.754203
Yahoo-LTR NDCG@10	0.79655	0.795827	0.795273	0.795894	0.797302	0.795584
Expo AUC	0.776217	0.771566	0.743329	0.776285	0.77098	0.744078
MS-LTR NDCG@1	0.521265	0.521392	0.518653	0.521789	0.522163	0.516388
MS-LTR NDCG@3	0.503153	0.505753	0.501697	0.503886	0.504089	0.501691
MS-LTR NDCG@5	0.509236	0.510391	0.507193	0.509861	0.510095	0.50663
MS-LTR NDCG@10	0.527835	0.527304	0.524603	0.528009	0.527059	0.524722
Bosch AUC	0.718115	0.721791	0.716677	0.717184	0.724761	0.717005

We record the wall clock time after 500 iterations, as shown in the figure below:

[image: Performance Comparison]

When using a GPU, it is advisable to use a bin size of 63 rather than 255,
because it can speed up training significantly without noticeably affecting
accuracy. On CPU, using a smaller bin size only marginally improves
performance, sometimes even slows down training, like in Higgs (we can
reproduce the same slowdown on two different machines, with different GCC
versions). We found that GPU can achieve impressive acceleration on large and
dense datasets like Higgs and Epsilon. Even on smaller and sparse datasets,
a budget GPU can still compete and be faster than a 28-core Haswell server.

Memory Usage

The next table shows GPU memory usage reported by nvidia-smi during training
with 63 bins. We can see that even the largest dataset just uses about 1 GB of
GPU memory, indicating that our GPU implementation can scale to huge
datasets over 10x larger than Bosch or Epsilon. Also, we can observe that
generally a larger dataset (using more GPU memory, like Epsilon or Bosch)
has better speedup, because the overhead of invoking GPU functions becomes
significant when the dataset is small.

Datasets	Higgs	Epsilon	Bosch	MS-LTR	Expo	Yahoo-LTR
———————–	——-	———	——–	———	——-	———-
GPU Memory Usage (MB)	611	901	1067	413	405	291

 Correspondence Table

Correspondence Table

When using OpenCL SDKs, targeting CPU and GPU at the same time is sometimes possible. This is especially true for Intel OpenCL SDK and AMD APP SDK.

You can find below a table of correspondence:

SDK	CPU Intel/AMD	GPU Intel	GPU AMD	GPU NVIDIA
—	:—:	:—:	:—:	:—:
Intel SDK for OpenCL [https://software.intel.com/en-us/articles/opencl-drivers]	Supported	Supported *	Supported	Untested
AMD APP SDK [http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/]	Supported	Untested *	Supported	Untested
NVIDIA CUDA Toolkit [https://developer.nvidia.com/cuda-downloads]	Untested **	Untested **	Untested **	Supported

Legend:

	* Not usable directly.

	** Reported as unsupported in public forums.

AMD GPUs using Intel SDK for OpenCL is not a typo, nor AMD APP SDK compatibility with CPUs.

Targeting Table

We present the following scenarii:

	CPU, no GPU

	Single CPU and GPU (even with integrated graphics)

	Multiple CPU/GPU

We provide test R code below, but you can use the language of your choice with the examples of your choices:

library(lightgbm)
data(agaricus.train, package = "lightgbm")
train <- agaricus.train
train$data[, 1] <- 1:6513
dtrain <- lgb.Dataset(train$data, label = train$label)
data(agaricus.test, package = "lightgbm")
test <- agaricus.test
dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)
valids <- list(test = dtest)

params <- list(objective = "regression",
 metric = "rmse",
 device = "gpu",
 gpu_platform_id = 0,
 gpu_device_id = 0,
 nthread = 1,
 boost_from_average = FALSE,
 num_tree_per_iteration = 10,
 max_bin = 32)
model <- lgb.train(params,
 dtrain,
 2,
 valids,
 min_data = 1,
 learning_rate = 1,
 early_stopping_rounds = 10)

Using a bad gpu_device_id is not critical, as it will fallback to:

	gpu_device_id = 0 if using gpu_platform_id = 0

	gpu_device_id = 1 if using gpu_platform_id = 1

However, using a bad combination of gpu_platform_id and gpu_device_id will lead to a crash (you will lose your entire session content). Beware of it.

CPU only architectures

When you have a single device (one CPU), OpenCL usage is straightforward: gpu_platform_id = 0, gpu_device_id = 0

This will use the CPU with OpenCL, even though it says it says GPU.

Example:

> params <- list(objective = "regression",
+ metric = "rmse",
+ device = "gpu",
+ gpu_platform_id = 0,
+ gpu_device_id = 0,
+ nthread = 1,
+ boost_from_average = FALSE,
+ num_tree_per_iteration = 10,
+ max_bin = 32)
> model <- lgb.train(params,
+ dtrain,
+ 2,
+ valids,
+ min_data = 1,
+ learning_rate = 1,
+ early_stopping_rounds = 10)
[LightGBM] [Info] This is the GPU trainer!!
[LightGBM] [Info] Total Bins 232
[LightGBM] [Info] Number of data: 6513, number of used features: 116
[LightGBM] [Info] Using requested OpenCL platform 0 device 1
[LightGBM] [Info] Using GPU Device: Intel(R) Core(TM) i7-4600U CPU @ 2.10GHz, Vendor: GenuineIntel
[LightGBM] [Info] Compiling OpenCL Kernel with 16 bins...
[LightGBM] [Info] GPU programs have been built
[LightGBM] [Info] Size of histogram bin entry: 12
[LightGBM] [Info] 40 dense feature groups (0.12 MB) transfered to GPU in 0.004540 secs. 76 sparse feature groups.
[LightGBM] [Info] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Trained a tree with leaves=16 and max_depth=8
[1]: test's rmse:1.10643e-17
[LightGBM] [Info] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Trained a tree with leaves=7 and max_depth=5
[2]: test's rmse:0

Single CPU and GPU (even with integrated graphics)

If you have integrated graphics card (Intel HD Graphics) and a dedicated graphics card (AMD, NVIDIA), the dedicated graphics card will automatically override the integrated graphics card. The workaround is to disable your dedicated graphics card to be able to use your integrated graphics card.

When you have multiple devices (one CPU and one GPU), the order is usually the following:

	GPU: gpu_platform_id = 0, gpu_device_id = 0, sometimes it is usable using gpu_platform_id = 1, gpu_device_id = 1 but at your own risk!

	CPU: gpu_platform_id = 0, gpu_device_id = 1

Example of GPU (gpu_platform_id = 0,gpu_device_id = 0):

> params <- list(objective = "regression",
+ metric = "rmse",
+ device = "gpu",
+ gpu_platform_id = 0,
+ gpu_device_id = 0,
+ nthread = 1,
+ boost_from_average = FALSE,
+ num_tree_per_iteration = 10,
+ max_bin = 32)
> model <- lgb.train(params,
+ dtrain,
+ 2,
+ valids,
+ min_data = 1,
+ learning_rate = 1,
+ early_stopping_rounds = 10)
[LightGBM] [Info] This is the GPU trainer!!
[LightGBM] [Info] Total Bins 232
[LightGBM] [Info] Number of data: 6513, number of used features: 116
[LightGBM] [Info] Using GPU Device: Oland, Vendor: Advanced Micro Devices, Inc.
[LightGBM] [Info] Compiling OpenCL Kernel with 16 bins...
[LightGBM] [Info] GPU programs have been built
[LightGBM] [Info] Size of histogram bin entry: 12
[LightGBM] [Info] 40 dense feature groups (0.12 MB) transfered to GPU in 0.004211 secs. 76 sparse feature groups.
[LightGBM] [Info] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Trained a tree with leaves=16 and max_depth=8
[1]: test's rmse:1.10643e-17
[LightGBM] [Info] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Trained a tree with leaves=7 and max_depth=5
[2]: test's rmse:0

Example of CPU (gpu_platform_id = 0,gpu_device_id = 1):

> params <- list(objective = "regression",
+ metric = "rmse",
+ device = "gpu",
+ gpu_platform_id = 0,
+ gpu_device_id = 1,
+ nthread = 1,
+ boost_from_average = FALSE,
+ num_tree_per_iteration = 10,
+ max_bin = 32)
> model <- lgb.train(params,
+ dtrain,
+ 2,
+ valids,
+ min_data = 1,
+ learning_rate = 1,
+ early_stopping_rounds = 10)
[LightGBM] [Info] This is the GPU trainer!!
[LightGBM] [Info] Total Bins 232
[LightGBM] [Info] Number of data: 6513, number of used features: 116
[LightGBM] [Info] Using requested OpenCL platform 0 device 1
[LightGBM] [Info] Using GPU Device: Intel(R) Core(TM) i7-4600U CPU @ 2.10GHz, Vendor: GenuineIntel
[LightGBM] [Info] Compiling OpenCL Kernel with 16 bins...
[LightGBM] [Info] GPU programs have been built
[LightGBM] [Info] Size of histogram bin entry: 12
[LightGBM] [Info] 40 dense feature groups (0.12 MB) transfered to GPU in 0.004540 secs. 76 sparse feature groups.
[LightGBM] [Info] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Trained a tree with leaves=16 and max_depth=8
[1]: test's rmse:1.10643e-17
[LightGBM] [Info] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Trained a tree with leaves=7 and max_depth=5
[2]: test's rmse:0

When using a wrong gpu_device_id, it will automatically fallback to gpu_device_id = 0:

> params <- list(objective = "regression",
+ metric = "rmse",
+ device = "gpu",
+ gpu_platform_id = 0,
+ gpu_device_id = 9999,
+ nthread = 1,
+ boost_from_average = FALSE,
+ num_tree_per_iteration = 10,
+ max_bin = 32)
> model <- lgb.train(params,
+ dtrain,
+ 2,
+ valids,
+ min_data = 1,
+ learning_rate = 1,
+ early_stopping_rounds = 10)
[LightGBM] [Info] This is the GPU trainer!!
[LightGBM] [Info] Total Bins 232
[LightGBM] [Info] Number of data: 6513, number of used features: 116
[LightGBM] [Info] Using GPU Device: Oland, Vendor: Advanced Micro Devices, Inc.
[LightGBM] [Info] Compiling OpenCL Kernel with 16 bins...
[LightGBM] [Info] GPU programs have been built
[LightGBM] [Info] Size of histogram bin entry: 12
[LightGBM] [Info] 40 dense feature groups (0.12 MB) transfered to GPU in 0.004211 secs. 76 sparse feature groups.
[LightGBM] [Info] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Trained a tree with leaves=16 and max_depth=8
[1]: test's rmse:1.10643e-17
[LightGBM] [Info] No further splits with positive gain, best gain: -inf
[LightGBM] [Info] Trained a tree with leaves=7 and max_depth=5
[2]: test's rmse:0

Do not ever run under the following scenario as it is known to crash even if it says it is using the CPU because it is NOT the case:

	One CPU and one GPU

	gpu_platform_id = 1, gpu_device_id = 0

> params <- list(objective = "regression",
+ metric = "rmse",
+ device = "gpu",
+ gpu_platform_id = 1,
+ gpu_device_id = 0,
+ nthread = 1,
+ boost_from_average = FALSE,
+ num_tree_per_iteration = 10,
+ max_bin = 32)
> model <- lgb.train(params,
+ dtrain,
+ 2,
+ valids,
+ min_data = 1,
+ learning_rate = 1,
+ early_stopping_rounds = 10)
[LightGBM] [Info] This is the GPU trainer!!
[LightGBM] [Info] Total Bins 232
[LightGBM] [Info] Number of data: 6513, number of used features: 116
[LightGBM] [Info] Using requested OpenCL platform 1 device 0
[LightGBM] [Info] Using GPU Device: Intel(R) Core(TM) i7-4600U CPU @ 2.10GHz, Vendor: Intel(R) Corporation
[LightGBM] [Info] Compiling OpenCL Kernel with 16 bins...
terminate called after throwing an instance of 'boost::exception_detail::clone_impl<boost::exception_detail::error_info_injector<boost::compute::opencl_error> >'
 what(): Invalid Program

This application has requested the Runtime to terminate it in an unusual way.
Please contact the application's support team for more information.

Multiple CPU and GPU

If you have multiple devices (multiple CPUs and multiple GPUs), you will have to test different gpu_device_id and different gpu_platform_id values to find out the values which suits the CPU/GPU you want to use. Keep in mind that using the integrated graphics card is not directly possible without disabling every dedicated graphics card.

_static/up-pressed.png

_static/comment-close.png

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		Welcome to LightGBM's documentation!

 		Quick Start

 		Training data format

 		Categorical feature support

 		Weight and query/group data

 		Parameter quick look

 		Run LightGBM

 		Examples

 		Python Quick Start

 		Install

 		Data Interface

 		To load a libsvm text file or a LightGBM binary file into Dataset:

 		To load a numpy array into Dataset:

 		To load a scpiy.sparse.csr_matrix array into Dataset:

 		Saving Dataset into a LightGBM binary file will make loading faster:

 		Create validation data

 		Specific feature names and categorical features

 		Weights can be set when needed:

 		Memory efficent usage

 		Setting Parameters

 		Training

 		CV

 		Early Stopping

 		Prediction

 		Parameters

 		Parameter format

 		Core Parameters

 		Learning control parameters

 		IO parameters

 		Objective parameters

 		Metric parameters

 		Network parameters

 		GPU parameters

 		Others

 		Continued training with input score

 		Weight data

 		Query data

 		Parameters Tuning

 		Convert parameters from XGBoost

 		For faster speed

 		For better accuracy

 		Deal with over-fitting

 		Python API Reference

 		Data Structure API

 		Training API

 		Scikit-learn API

 		Callbacks

 		Plotting

 		GPU Tutorial

 		GPU Setup

 		Build LightGBM

 		Install Python Interface (optional)

 		Dataset Preparation

 		Run Your First Learning Task on GPU

 		Further Reading

 		FAQ

 		Catalog

 		Python-package

 		Development Guide

 		Algorithms